
Notes on Modular Arithmetic

Leonardo Tamiano

December 16, 2022

This document was prepared for the Computer Network Security (CNS) course offered during
the year 2022-2023 by the Tor Vergata university of Rome. The document contains some notes
regarding certain algorithms which are related to modular arithmetic and which are needed to
understand the computational processes used by the RSA cryptographic system.

In particular, two algorithms will be presented and discussed.

1. The first is the square and multiply algorithm, used to compute efficiently numbers of the
form xy mod N , that is, powers of numbers working in modular arithmetic.

2. The second algorithm is the extended euclidean algorithm, which is used to compute
identities of the form a · x + b · y = GCD(a, b), which are also known as Bézout’s identity.
These identities are needed to compute the inverse of a number when working with modular
arithmetic.

1

Contents

1 Efficient Modular Exponentiation with Square and Multiply 3
1.1 Examples . 5

1.1.1 Example 1 . 5
1.1.2 Example 2 . 6

1.2 Exercises . 6
1.2.1 Exercise 1 . 6
1.2.2 Exercise 2 . 6
1.2.3 Exercise 3 . 7

2 Modular Inversion with Extended Euclidean Algorithm 7
2.1 Euclidean Algorithm . 7

2.1.1 Example 1 . 8
2.1.2 Example 2 . 9

2.2 Extended Euclidean Algorithm . 9
2.2.1 Example 1 . 10
2.2.2 Example 2 . 11

2.3 Exercises . 12
2.3.1 Exercise 1 . 12
2.3.2 Exercise 2 . 12
2.3.3 Exercise 3 . 12

3 RSA Exercises 12
3.1 Exercise 1 . 13
3.2 Exercise 2 . 14
3.3 Exercise 3 . 15

2

1 Efficient Modular Exponentiation with Square and Multiply

Consider the problem of computing powers of numbers when working with a certain modulo N .
That is, we want to compute the value

xy mod N

Given that when working modulo N we have to reduce our numbers by taking the remainders
when divided by N , and that exponentiation is simply repeated multiplication, we could approach
our problem by simply multiplying x by itself y items, and, after each multiplication, before the
next one is performed we reduce everything modulo N .

x mod N → x2 mod N → ... → xy mod N︸ ︷︷ ︸
y multiplications

For example, suppose x = 5, y = 6 and N = 3. To compute 56 mod 3 using the previous
method we’d need to compute the following numbers

51 mod 3 = 2

52 mod 3 = 2 · 5 mod 3 = 1

53 mod 3 = 1 · 5 mod 3 = 2

54 mod 3 = 2 · 5 mod 3 = 1

55 mod 3 = 1 · 5 mod 3 = 2

56 mod 3 = 2 · 5 mod 3 = 1

At the end, after 6 multiplications we have found our answer, that 56 mod 3 = 1. It is not
hard to see why this approach works, as it is a pretty intuitive approach to take. Yet, we’re not
only interested in correctness, we’re also interested in performance. We can then ask ourselves: Is
this approach also an efficient one?

A quick analysis reveals that no, this approach is not really efficient. Given that each multi-
plication requires roughly O(n2) operations, where n is the maximum bit-length of the numbers
we’re trying to multiply, and that in this approach we have to do y multiplications, where y ≤ 2n,
this naive method has a computation complexity of O(2n ·n2), which, as we can see, is exponential
with respect to the input size. This is a huge problem, especially when we consider that in RSA
cryptography we must do these sorts of computations with numbers that are at least 1024 bit long.

Can we do it better? Can we compute xy mod N without doing y multiplications?
Yes, we can! A better approach to the problem of modular exponentiation is given to us by the

algorithmic Divide et Impera strategy. The basic idea is, instead of computing all the powers of x,
going from x1 to xy, we can compute squares of x, that is, powers of x of the form x2

i
, such as

x2
0
= x1 , x2

1
= x2 , x2

2
= x4 , 22

3
= x8 . . .

Notice that we can have at most ⌊log2 y⌋ of such powers, given that if i > ⌊log2 y⌋, then x2
i
> xy

and therefore we do not need to compute it. This is why this second approach is, as we will shortly
see, much faster than the previous one: the old approach required y multiplications, while the
new one only requires log2 y multiplications. Once we have computed all those powers, we can
combine them together to obtain our final answer. To combine these powers we consider the binary
representation of y and only use the powers that correspond to a 1 digit.

3

To make this last point more clear, let us compute once again the value 56 mod 3 using this
new and more efficient algorithm. The first thing we do is we compute the binary representation
of 6

6 = (110)2 = 0 · 20 + 1 · 21 + 1 · 22 = 2 + 4 = 6

Then we compute the following powers of 5

51 mod 3 = 5 mod 3 = 2

52 mod 3 = 2 · 2 mod 3 = 1

54 mod 3 = 1 · 1 mod 3 = 1

Finally, we combine such powers of 5 to obtain our final answer

56 mod 3 = 5(2
1+22) mod 3

= (52 mod 3) · (54 mod 3)

= 1 · 1 mod 3

= 1

We obtained the same answer as before, but instead of doing 6 multiplications we only needed
3 multiplications! And this small difference between the two approaches is only a consequence
of the fact that these numbers are small. If we needed to compute 51024 mod 3, then the first
approach would’ve required 1024 multiplications, while the second approach only requires around
10 multiplication!

We can now understand why this new method works and why it is more efficient than the
previous one. What we’re doing, essentially, is writing the exponent in a different way. Instead of
writing it in base 10, we’re writing it in base 2, and we’re using various properties of exponents to
transform one notation into the other.

56 = 5(0·2
0+1·21+1·22) = 50 · 52 · 54 = 1 · 52 · 54 = 52 · 54

So far we have seen an example in which we had to write out the entire binary representation
of the number before going to the next step. If we’re in a rush there is also another similar
way of computing xy mod N efficiently that does not require to write out explicitly the binary
representation of the exponent. The method is based on the following identity

xy =

{
x⌊

y
2
⌋ · x⌊

y
2
⌋ , y is even

x⌊
y
2
⌋ · x⌊

y
2
⌋ · x , y is odd

As we can see, the idea is to start from knowing the value of x⌊
y
2
⌋ and using this knowledge to

compute xy. This same identity also works in the modular contest. Here follows follows a python
implementation of the previous idea, which can be used to compute xy mod n. In the code we
check the base case x0 mod n = 1. Then, if we’re not in the base case, we compute x⌊

y
2
⌋ mod n

and then we combine this knowledge to finally compute xy mod n.

4

def fast_exp(x, y, n):

if y == 0:

return 1

r = fast_exp(x, int(y/2), n)

if y % 2 == 0:

return r*r % n

else:

return r*r*x % n

While in code this second approach is more efficient, when writing it by hand I prefer the
first one, the one in which the binary represention of the exponent is written explicitly. Still, it’s
important to point out that these two slightly different ways of computing powers are based on
the same idea: computing only powers of x of the form x2

i
. The only difference is that the second

method is more efficient, while the first one, at least in my opinion, is more clear.

1.1 Examples

Let us now see some examples. In all these examples I use the first described method.

1.1.1 Example 1

Let x = 5, y = 37 and N = 13.

1. First we compute the binary representation of 37

(100101)2 = 20 + 22 + 25 = 1 + 4 + 32 = 37

2. Then we compute 5i mod N where i is a power of 2 that is less than 37.

51 mod 13 = 5 mod 13 = 5

52 mod 13 = 5 · 5 mod 13 = 12

54 mod 13 = 12 · 12 mod 13 = 1

58 mod 13 = 1 · 1 mod 13 = 1

516 mod 13 = 1 · 1 mod 13 = 1

532 mod 13 = 1 · 1 mod 13 = 1

3. Finally, we combine the values by multiplying only the powers corresponding to a 1 digit in
the binary representation of 37.

537 mod 13 = 5(2
0+22+25) mod 13

= (51 mod 13) · (54 mod 13) · (532 mod 13)

= 5 · 1 · 1 mod 13

= 5

5

1.1.2 Example 2

Let x = 4, y = 28 and N = 17.

1. First we compute the binary representation of 28

(11100)2 = 22 + 23 + 24 = 28

2. Then we compute 4i mod 17 where i is a power of 2 that is less than 28.

41 mod 17 = 4 mod 17 = 4

42 mod 17 = 4 · 4 mod 17 = 16

44 mod 17 = 16 · 16 mod 17 = 1

48 mod 17 = 1 · 1 mod 17 = 1

416 mod 17 = 1 · 1 mod 17 = 1

3. Finally, we combine the values by multiplying only the powers corresponding to a 1 digit in
the binary representation of 28.

428 mod 17 = 4(2
2+23+24) mod 17

= (44 mod 17) · (48 mod 17) · (416 mod 17)

= 1 · 1 · 1 mod 17

= 1

1.2 Exercises

Solve the following exercises using the method discussed in the previous examples. You can check
if the answer you got is a valid answer by using the square and multiply.py script available in
the code resources of the lecture 1. The script must be executed in the following way

python3 square_and_multiply.py 6553 89999 20013

Computed value 6553^89999 MOD 20013 = 6322

1.2.1 Exercise 1

Let x = 11, y = 103 and N = 143. Compute the value xy mod N using the square and multiply
algorithm.

1.2.2 Exercise 2

Let x = 15, y = 150 and N = 203. Compute the value xy mod N using the square and multiply
algorithm.

1https://teaching.leonardotamiano.xyz/class-material/cns/modular_arithmetic/code.zip

6

https://teaching.leonardotamiano.xyz/class-material/cns/modular_arithmetic/code.zip

1.2.3 Exercise 3

Let x = 4, y = 1024 and N = 37. Compute the value xy mod N using the square and multiply
algorithm.

2 Modular Inversion with Extended Euclidean Algorithm

Let us now consider another problem. Let a, b ∈ Z be two arbitrary integers, and let d = GCD(a, b).
What we want to find are two other integers, x, y ∈ Z, such that

a · x+ b · y = d = GCD(a, b)

Before describing the solution, let us first understand why exactly we are interested in such
problem. Being able to solve the problem we just posed is crucial if we want to compute inverses
in modular arithmetic. Indeed, consider the slightly different problem of wanting to compute the
inverse of a certain a ∈ Zn. That is, we want to solve the following equation

x ≡ a−1 mod n

It can be proved that the previous equation has a solution if and only if GCD(a, n) = 1. We
will not prove this fact, but, assuming this is the case, notice how we can rewrite the equation we
started with as follows

x ≡ a−1 mod n ⇐⇒ a · x ≡ 1 mod n

⇐⇒ ∃x ∈ Z : a · x− 1 divides n

⇐⇒ ∃x, k ∈ Z : a · x− 1 = n · k
⇐⇒ ∃x, k ∈ Z : a · x+ n · (−k) = 1

⇐⇒ ∃x, k ∈ Z : a · x+ n · (−k) = 1 = GCD(a, n)

All of this to say that the inverse of a modulus n is the coefficient x that multiplies the a in the
identity

a · x+ n · (−k) = 1 = GCD(a, n)

If we’re able to compute such expressions, also known as Bézout’s identities, then we will also
be able to compute inverses when working with modular arithmetic.

So, with respect to the actual algorithm, we will start with the traditional euclidean algorithm,
which can be used anytime we need to compute the GCD, also known as the Greatest Common
Divisor, between two numbers a and b, and then we will extend it in order to compute Bézout’s
identities.

2.1 Euclidean Algorithm

GCD stands for Greatest Common Divisor, and, as the name suggests, it is the highest number
that divides both a and b.

For example, if a = 60 and b = 10, then GCD(a, b) = GCD(60, 10) = 10, because there are no
numbers greater than 10 that divide both 10 and 60. One can easily see this by computing the
factorization of both numbers and picking only the factors that appear in both numbers.

7

{
60 = 22 · 31 · 51

10 = 21 · 51
=⇒ GCD(60, 10) = 21 · 51 = 10

This factorization can be done for any numbers, the problem is that factorizing a number is
an expensive process, computationally speaking. The euclidean algorithm offers us a smart way to
compute such GCD without having to factorize the two numbers. The algorithm is based on the
following fact, taken from classical number theory.

Given a, b, the GCD of a and b is equal to the GCD of b and a mod b.

We will not prove mathematically this result, but consider the previous example, with a = 60
and b = 10. It is indeed true that

GCD(60, 10) = GCD(10, 60 mod 10)

= GCD(10, 0)

= 10

The cool thing about this fact is that it allows us to compute the GCD of two numbers by
computing the GCD of two other numbers which are either equal to or smaller than the previous
numbers. This is because a mod b < b.

We now present a python implementation of the standard euclidean algorithm

def gcd(a, b):

if b == 0:

return a

else:

return gcd(b, a % b)

The algorithm works because at each step the GCD of the numbers remains unchanged, while
the numbers keep decreasing and decreasing until one of them reaches 0, at which point the GCD
is the other remaining number. This idea is implemented in the script standard gcd.py, which
you can use as follows

python3 standard_gcd.py 50 5

Computed value GCD(50, 5) = 5

2.1.1 Example 1

Let a = 1337 and b = 175. Let us compute the GCD(a, b) using the traditional Euclidean algorithm.

GCD(1337, 175) = GCD(175, 1337 mod 175) = GCD(175, 112)

= GCD(112, 175 mod 112) = GCD(112, 63)

= GCD(63, 112 mod 63) = GCD(63, 49)

= GCD(49, 63 mod 49) = GCD(49, 14)

= GCD(14, 49 mod 14) = GCD(14, 7)

= GCD(7, 14 mod 7) = GCD(7, 0)

= 7

8

2.1.2 Example 2

Let a = 42 and b = 3150. Let us compute the GCD(a, b) using the traditional Euclidean algorithm.

GCD(42, 3150) = GCD(3150, 42 mod 3150) = GCD(3150, 42)

= GCD(42, 3150 mod 42) = GCD(42, 0)

= 42

2.2 Extended Euclidean Algorithm

The algorithm we just showed is not enough to solve our particular problem. Remember that we are
not particular interested in knowing GCD(a, b). We are interested in knowing the two coefficients
(x, y) such that

a · x+ b · y = GCD(a, b)

The idea is to start from the basic euclidean algorithm and extend it to construct such x and
y. We will develop a recursive algorithm following the structure of the traditional euclidean
algorithm. As with any recursive algorithm, we will need to define what to do in our base case as
well as in the general recursive case.

• (base case): As a base case, consider when b = 0. This is the final step of the traditional
euclidean algorithm, and it allows us to directly infer that GCD(a, b) = GCD(a, 0) = a. With
respect to our new problem, we can easily find our identity by writing

a · 1 + b · 0 = a = GCD(a, b)

As we can see, the (x, y) coefficients for the Bézout identity between a and 0 are given by
x = 1 and y = 0.

• (recursive case): Consider now the general recursive case, and assume we have found two
coefficients, namely (x1, y1) for the Bézout identity between b and a mod b. That is, we know

b · x1 + (a mod b) · y1 = GCD(b, a mod b) = GCD(a, b)

can we also find two other coefficients, namely (x, y) for the Bézout identity between a and
b? By knowing that

a mod b = a− b · q , where q = ⌊a
b
⌋

we can rewrite the previous identity in terms of b and a as follows

b · x1 + (a mod b) · y1 = b · x1 + (a− b · q) · y1
= b · x1 + a · y1 − b · q · y1
= b · (x1 − q · y1) + a · y1

Putting everything together we have that

9

a · y1 + b ·
(
x1 − ⌊a

b
⌋ · y1

)
= GCD(b, a mod b) = GCD(a, b)

We are set! Indeed, we have found our coefficients, which are{
x := xy

y := x1 − ⌊ab ⌋ · y1

By defining (x, y) as shown above, the following identity becomes true

a · x+ b · y = GCD(a, b)

Here it follows a python implementation of the extended euclidean algorithm

def extended_gcd(a, b):

if b == 0:

return 1, 0, a

else:

x1 , y1 , d = extended_gcd(b, a % b)

return y1 , x1 - y1*int((a/b)), d

Let us now see some numerical example to clear the ideas regarding this algorithm.

2.2.1 Example 1

Let a = 1337 and b = 175. In the previous section we showed that GCD(1337, 175) = 7. Let us
now find x and y such that

1337 · x+ 175 · y = 7 = GCD(1337, 175)

To start off we will divide 1337 by 175 and we will write both the quotient q1 as well as the
remainder r1.

1337 = 175 · 7 + 112

As we can see, q1 = 7 and r1 = 112. Then we keep going, but this time we will divide 175 by
112, which was the previous remainder, to obtain the second quotient q2 and the second remainder
r2.

175 = 112 · 1 + 63

This process keeps going until we reach the final step where we have a remainder of 0. Let’s
write all of these equations one after the other.

1337 = 175 · 7 + 112 , q1 = 7, r1 = 112

175 = 112 · 1 + 63 , q2 = 1, r2 = 63

112 = 63 · 1 + 49 , q3 = 1, r3 = 49

63 = 49 · 1 + 14 , q4 = 1, r4 = 14

49 = 14 · 3 + 7 , q5 = 3, r5 = 7

14 = 7 · 2 + 0 , q6 = 2, r6 = 0

10

Notice how we stop then r6 = 0. We will now begin to rewrite every equation written before
starting from the one in which r5 = 7. Notice how we skip the last equation. We will rewrite every
equation in terms of the remainder as is shown below

49 = 14 · 3 + 7 ⇐⇒ 7 = 49 + 14 · (−3)

63 = 49 · 1 + 14 ⇐⇒ 14 = 64 + 49 · (−1)

112 = 63 · 1 + 49 ⇐⇒ 49 = 112 + 63 · (−1)

175 = 112 · 1 + 63 ⇐⇒ 63 = 175 + 112 · (−1)

1337 = 175 · 7 + 112 ⇐⇒ 112 = 1337 + 175 · (−7)

Keep in mind the particular way in which we have re-written the equations. This will now be
useful, because now we start from the top equation, which is 7 = 49 + 14 · (−3), and we substitute
the value for 14 to obtain

7 = 49 + 14 · (−3) = 49 + 63 · (−3) + 49 · (3)
= 49 · (4) + 63 · (−3)

Notice how have rewritten 7 but this time using 49 and 63 instead of 49 and 14. The idea is to
keep going until we rewrite 7 using the initial a = 1337 and b = 175.

7 = 49 + 14 · (−3) = 49 + 63 · (−3) + 49 · (3) (substitute 14)

= 49 · (4) + 63 · (−3)

= 112 · (4) + 63 · (−4) + 63 · (−3) (substitute 49)

= 112 · (4) + 63 · (−7)

= 112 · (4) + 175 · (−7) + 112 · (7) (substitute 63)

= 112 · (11) + 175 · (−7)

= 1337 · (11) + 175 · (−77) + 175 · (−7) (substitute 112)

= 1337 · (11) + 175 · (−84)

In the last equation we were finally able to express 7 using 1337 and 175. In particular, if x = 11
and y = −84 the we have what we wanted from the start, which is

1337 · x+ 175 · y = 7 = GCD(1337, 175)

2.2.2 Example 2

Let a = 42 and b = 3150. In the previous section we showed that GCD(42, 3150) = 42. Let us now
find x and y such that

42 · x+ 3150 · y = 42 = GCD(42, 3150)

First, we keep dividing the numbers following the basic euclidean algorithm as we did in the
previous example until we reach a remainder of 0.

42 = 3150 · 0 + 42

3150 = 42 · 75 + 0

11

In this case we don’t have to do much work, because we can simply invert the first equation to
get

42 = 3150 · 0 + 42 ⇐⇒ 42 · 1 + 3150 · 0 = 42 = GCD(42, 3150)

Therefore, our identity is given by x = 1 and y = 0.

2.3 Exercises

2.3.1 Exercise 1

Let a = 1362 and b = 251. Compute GCD(a, b) and find the two coefficients x, y ∈ Z such that

1362 · x+ 251 · y = GCD(1362, 251)

2.3.2 Exercise 2

Let a = 1444 and b = 762. Compute GCD(a, b) and find the two coefficients x, y ∈ Z such thatq

1444 · x+ 762 · y = GCD(1444, 762)

2.3.3 Exercise 3

Let a = 256 and b = 900. Compute GCD(a, b) and find the two coefficients x, y ∈ Z such thatq

256 · x+ 900 · y = GCD(256, 900)

3 RSA Exercises

We are now ready to see how these two algorithms are used in the context of RSA. As a small
remainder, we remember that in RSA keys are generated through the following process:

• Two big (> 1024 bit) and distant primes p and q are choosen.

• The values N and Φ(N) are computed as

N = p · q
Φ(N) = (p− 1) · (q − 1)

• A value e < Φ(N) is choosen such that GCD(e,Φ(N)) = 1

• We compute the d as the inverse of e modulus ϕ(N)

d ≡ e−1 mod Φ(N)

After the keys have been generated we have that (e,N) is the public key, and can therefore be
shared with everyone, while d is the private key and must be kept secret. When we want to encrypt
something we first transform that something into a number m ∈ [0, N). For example if we want
to encrypt a text we could use the underlying bytes of the text to get the number m. After we

12

have the number m, which is our plaintext, to actually encrypt it we use modular exponentiation
to compute the ciphertext

c = me mod N

Everyone can encrypt messages, as (e,N) is the public key. To decrypt an encrypted message
c ∈ [0, N) we proceed once again with modular exponentiation

m = cd mod N

Only the owner of the private key d can decrypt messages.

3.1 Exercise 1

Consider the following RSA parameters

P = 31

Q = 47

N = P ·Q = 1457

e = 13

d = 637

Let m = 1337 be a plaintext message. First, compute the encryption of m as c = me mod N
using the square and multiply algorithm. Then, after having computed c, compute the value cd

mod N , and make sure that

cd mod N = m mod N

Solution: First we compute c = me mod N , with M = 1337, e = 13 and N = 1457. Following
the square and multiply intuition, we write out the binary representation of the exponent

13 = 8 + 4 + 1 = 23 + 22 + 20 = (1101)2

Then we compute all the powers 1337i mod 1457 where i is a power of 2 that is less than 8. In
particular we get

13371 mod 1457 = 1337

13372 mod 1457 = 1337 · 1337 mod 1457 = 1287

13374 mod 1457 = 1287 · 1287 mod 1457 = 1217

13378 mod 1457 = 1217 · 1217 mod 1457 = 777

Finally, we combine the computed values according to the binary representation of the exponent

133713 mod 1457 = 1337(2
0+22+23) mod 1457

= (13371 mod 1457) · (13374 mod 1457) · (13378 mod 1457)

= 1337 · 1217 · 777 mod 1457

= 994

13

Thus we can say that c = me mod N = 994. Now we have to compute cd mod N . We
proceed as we did previously, just that now the base is c = 994 and the exponent is d = 637 while
the modulus is the same N = 1457. First we write out the binary representation of the exponent

637 = 512 + 64 + 32 + 16 + 8 + 4 + 1 = 29 + 26 + 25 + 24 + 23 + 22 + 20 = (1001111101)2

Then we compute all the powers 994i mod 1457 where i is a power of 2 that is less than 637.
In particular we get

9941 mod 1457 = 994

9942 mod 1457 = 994 · 994 mod 1457 = 190

9944 mod 1457 = 190 · 190 mod 1457 = 1132

9948 mod 1457 = 1132 · 1132 mod 1457 = 721

99416 mod 1457 = 721 · 721 mod 1457 = 1149

99432 mod 1457 = 1149 · 1449 mod 1457 = 159

99464 mod 1457 = 159 · 159 mod 1457 = 512

994128 mod 1457 = 512 · 512 mod 1457 = 1341

994256 mod 1457 = 1341 · 1341 mod 1457 = 343

994512 mod 1457 = 343 · 343 mod 1457 = 1089

Finally, we combine the computed values according to the binary representation of the exponent

99413 mod 1457 = 994(2
9+26+25+24+23+22+20) mod 1457

= (9941 mod 1457) · (9944 mod 1457) · (9948 mod 1457) · (99416 mod 1457)

· (99432 mod 1457) · (99464 mod 1457) · (994512 mod 1457)

= 994 · 1132 · 721 · 1149 · 159 · 512 · 1089 mod 1457

= 1337

As we can see, we have that cd mod N = 1337, which is also the value of m. This means that
with the given parameters (e, d,N) we have that

cd mod N = (me)d mod N = me·d mod N = m

■

3.2 Exercise 2

Consider the following RSA parameters
P = 233

Q = 257

N = P ·Q = 59881

e = 3

14

Find the values d, k ∈ Z such that

e · d+N · k = 1

What is the private key of this RSA configuration? Why is that?

Solution: To obtain the private key we need to execute the extended euclidean algorithm on
the inputs (e,Φ(N)). Given that Φ(N) = 256 · 232 = 59392 we find the following execution.

First we keep dividing until we compute the GCD between e and Φ(N).

59392 = 7 · 8484 + 4

7 = 4 · 1 + 3

4 = 3 · 1 + 1

3 = 1 · 3 + 0

Then, we start from the second to last equation, and we write the various remainders in terms
of the other numbers.

1 = 4 · (1) + 3 · (−1)

3 = 7 · (1) + 4 · (−1)

4 = 59392 · (1) + 7 · (−8484)

And then we substitute, in order to express 1 in terms of e = 7 and Φ(N) = 59392.

1 = 4 · (1) + 3 · (−1)

= 4 · (1) + 7 · (−1) + 4 · (1) (substitute 3)

= 4 · (2) + 7 · (−1)

= 59392 · (2) + 7 · (−16968) + 7 · (−1)

= 59392 · (2) + 7 · (−16969)

Having finished, we can see that the coefficient x that multiplies the e = 7 is x = −16969. If we
want to express it as a positive number modulo Φ(N) we simply do d = Φ(N) − x = 42423. Our
private key is then d. This can also be checked by verifying that, for example

13377·42423 mod 59881 = 1337

■

3.3 Exercise 3

Consider the following RSA public key N = 143, e = 7 and let c = 115 be a ciphertext that you
managed to capture. You know that c was encrypted using the public key (N, e). That is, you
know there exists an m such that

c = me mod N

15

find such m.

Solution: To decrypt the ciphertext first we need to recover the key. In this exercise the key
can be easily recovered because N is the product of really small primes.

So, first we factorize N by trying out small common factors

N

2
= 71.5 ,

N

3
= 47.666666666666664

...

N

9
= 15.88888888888889 ,

N

10
= 14.3

N

11
= 13

As we can see, the value 11 perfectly divides N . This means that N = 11 · 13. Now that we
have found the factors of N we can compute the private key d, first by computing the value of
Φ(N) = (P − 1) · (Q− 1) = 10 · 12 = 120, and then we find the coefficient x such that

e · x+Φ(N) · k = 1 ⇐⇒ 7 · x+ 120 · k = 1

That is, we want to execute the Extended Euclidean Algorithm on the starting values (7, 120).
As we remember, we first set up a series of euclidean division to extract the GCD of those two
numbers. This time however we don’t have many equations, since

120 = 7 · 17 + 1

7 = 1 · 7 + 0

Then we start from the second to last equation and we express the GCD computed, which is 1,
in terms of e = 7 and Φ(N) = 120

120 = 7 · 17 + 1 ⇐⇒ 120 · (1) + 7 · (−17) = 1

This means that the coefficient that multiplies e = 7 is x = −17. If we want the positive version
modulo Φ(N) we can simply do Φ(N) − 17 = 103. Therefore we can say d = 103. That is, the
private key is d = 103. Notice indeed that

e · d mod Φ(N) = 7 · 103 mod Φ(N) = 1

Now, having recovered the private key, we can use it to recover the plaintext by computing cd

mod N , wich c = 115, d = 103 and N = 143. We can use the square and multiply algorithm to do
so. First we write out the binary representation of the exponent

103 = 26 + 25 + 22 + 21 + 20 = 64 + 32 + 4 + 2 + 1 = (1100111)2

Then we compute all the powers of the form ci mod N , where i is a power of 2 less than 103.

16

1151 mod 143 = 115

1152 mod 143 = 115 · 115 mod 143 = 69

1154 mod 143 = 69 · 69 mod 143 = 42

1158 mod 143 = 42 · 42 mod 143 = 48

11516 mod 143 = 48 · 48 mod 143 = 16

11532 mod 143 = 16 · 16 mod 143 = 113

11564 mod 143 = 113 · 113 mod 143 = 42

And finally we put multiply together the values that we need

115103 mod 143 = 115(2
6+25+22+21+20) mod 143

= (11564 mod 143) · (11532 mod 143) · (1154 mod 143)·
(1152 mod 143) · (1151 mod 143)

= 42 · 113 · 42 · 69 · 115 mod 143

= 15

This means that the decrypted message, that is, the plaintext, is m = 15!

■

17

	Efficient Modular Exponentiation with Square and Multiply
	Examples
	Example 1
	Example 2

	Exercises
	Exercise 1
	Exercise 2
	Exercise 3

	Modular Inversion with Extended Euclidean Algorithm
	Euclidean Algorithm
	Example 1
	Example 2

	Extended Euclidean Algorithm
	Example 1
	Example 2

	Exercises
	Exercise 1
	Exercise 2
	Exercise 3

	RSA Exercises
	Exercise 1
	Exercise 2
	Exercise 3

