RSA Cryptography

LEONARDO TAMIANO

TABLE OF CONTENTS

e Why Public Key Cryptography?
e Hands-On Introduction to RSA
e RSAin Theory

e RSA In Practice

WHY PUBLIC KEY CRYPTOGRAPHY?

Cryptography can be studied from many different
points of view.

Many points of view in Cryptography (1/2)

Based on the services offered

e Confidentiality

e Integrity

e Authentication

e Protection against replay attacks

Many points of view in Cryptography (2/2)

Based on the ways keys are managed

e Symmetric key cryptography
e Asymmetric key cryptography

All algorithms based on symmetric key cryptography
assume to be working with a symmetric key that is
shared across all the entities that need to
communicate.

Encryption/Decryption in symmetric cryptography

(plaintext) p — ENCRYPT(p, k)= c (ciphertext)

(ciphertext) c — DECRYPT(c, k)= p (plaintext)

The problem is...

How do you share the symmetric key?

This is essentially impossible to solve if you consider a

situation in which you want to communicate securely

with someone you have never met and can't possibly
meet in other ways.

Q: Is it possible to communicate securely if you have
not been able to share a symmetric key beforehand?

Q: Is it possible to communicate securely if you have
not been able to share a symmetric key beforehand?

A: Yes, 1t is!

Q: Is it possible to communicate securely if you have
not been able to share a symmetric key beforehand?

A: Yes, 1t is!
Thanks to Asymmetric Cryptography!

Introduced by Whitfield Diffie and Martin Hellman in
1976, asymmetric cryptography has been a huge leap
forward for cryptography.

644 IEEE TRANSACTIONS ON INFORMATION THEORY. VOL. IT-22, NO. 6, NOVEMBER 1976

New Directions in Cryptography

Invited Paper
WHITFIELD DIFFIE ANf) MARTIN E. HELLMAN, MEMBER, IEEE

https://ee.stanford.edu/~hellman/publications/24.pdf

The paper introduced the idea of asymmetric
cryptography, also known as public-key cryptography
as well as the notion of one-way trapdoor functions.

The paper also discussed a pratical technique that
allowed to

share secrets securely over an insecure
communication channel

The technique introduced is now known as the
Diffie-Hellman Key Exchange (DH)

and it is used in many practical context, including
SSL/TLS.

Historical Note

Even though the first public paper of such ideas was
published in 1976 by Whitfield Diffie and Martin
Hellman, the same ideas were independently
discovered at GCHQ some years earlier around 1973.

GCHQ — Government Communications Headquarters

https://cryptome.org/ukpk-alt.htm

Asymmetric cryptography is based on the generation
of two keys k1, ko such that:

Asymmetric cryptography is based on the generation
of two keys k1, ko such that:

e All thatis encrypted by one of the key can only be
decrypted by the other.

Asymmetric cryptography is based on the generation
of two keys k1, ko such that:

e All thatis encrypted by one of the key can only be
decrypted by the other.

e Out of the two keys, only one can be used to derive
the other efficiently.

Out of the two keys, k1, ko, we call

e private key, the key that allows us to generate the
other key efficiently.
e public key, the remaining key.

For example, given k1, ko, if we can use k1 to generate
k-, then we call k1 the private key, and ks the public
key.

Reraphrasing...

In asymmetric cryptography we have two keys, a private
key, and a public key. From the private key we can
efficiently compute the public key, but from the public
key we cannot efficiently compute the private key.

RSA is one of the first examples of a complete public-
key cryptosystem that can be used for:

e confidentiality
e Integrity
e authentication

HANDS-ON INTRODUCTION TO RSA

Before describing the formal theory let us see some
pratical examples.

Suppose, for your own protection, that you want to
encrypt the following message

The tutor of CNS sucks at teaching

In RSA, everything is a number.
More specifically, everything is a number in some

modular group Z,,

MODULAR ARITHMETIC

In traditional arithmetic we consider sets made up of
Infinite numbers, such as

e the set of natural numbers
N={0,1,2,3,4,5,6,7,8,9,...}
e the set of integers

7 =1{0,1,-1,2,-2,3,-3,...}

The problem is that

computers have only a finite memory

To fix this problem, we introduce the modular group
2., , which is a well known and studied algebraic
structure that has only has a finite number of possible
values.

Anatomy of Z,, :

e |t contains N different values
Zw =40 ,1 , ..., n—1}

e Traditional operations replaced with modular
operations

3+7 mod 5=10 mod 5
— (0 mod 5

Modular operations works as follow:

e First we perform the operation as usual
e Then we take the remainder when dividing the
previous number with

Some examples

3+ 10
o+ 13

3 x 10
2x 17

mod 3 =13 mod 3 =1
mod 4 =18 mod 4 = 2

mod 6 =30 mod 6 =0
mod 7=34 mod 7=06

mod 3
mod 4

mod 6
mod 7

When working with modular arithmetic Z,, , the
number of the modulus 1 assumes a very critical role.

In particular, it matters whether n is a prime or not.

Modular arithmetic can be visualized as clock
arithmetic.

710 = {0,1,2,3,4,5,6,7,8,9,10,11}

Remember our objective was to encrypt the dangerous
message

The tutor of CNS sucks at teaching

How do we go from the message text to a number in
some Ziy, ?

RSA KEYS

Given that RSAis a public-key cryptography system,
we have two keys:

e A private key, an integer d
» A public key, composed of two integers (e, IV)

Before encrypting our message we have to obtain the
public key of the future receiver of the message.

RSA Keys

d, (e,N)

The number IV represents the modulus we're working
with.

7xn = {0,1,2,3,...,N — 1}

In our case, suppose our friend has the following
public key

65537
12357441190498766132449640928501623256469111823853059262686903
98208897117161516169208029001141055036840287816737238820534004
7657135711057889783956542652583652351606989/401769498818606567/
6412/0578863484599103723172886277118009531924346591366/9611816
8388195224114860554824660954136393556092086822258328661660329

B
i1

In our case, suppose our friend has the following
public key

65537
12357441190498766132449640928501623256469111823853059262686903
98208897117161516169208029001141055036840287816737238820534004
7657135711057889783956542652583652351606989/401769498818606567/
6412/0578863484599103723172886277118009531924346591366/9611816
8388195224114860554824660954136393556092086822258328661660329

What's up with the BIGGGG N?

B
i

The value IV is actually obtained by multiplying two
prime numbers P and ()

N=P-Q

For a secure system, P and () must be very bigggg
(> 1024 bits).

In our particular case

981569731816206792118534210498/7364526/3485598320277985759240
5629379966924732117737155869610686328434555/8/733065632271110
28207859064943055892282853176094089

125894684707052732634619/31920/748998199627974572082321922141
493623930038453609550986925916569721523263558109451542514916
6/00032129692647/01219/6969660208161

NOTE: not showing full numbers because of space...

P-Q = (9815---4089) - (1258 - - 8161)
235 - - - 0329)

(1
N

Code to generate RSA keys

from Crypto.PublicKey import RSA
def generate_key(bits):

KEY = RSA.generate(BIT_SIZE)
return KEY

(code/example_1_rsa_hands_on.py)

Code to print information about RSA key

def dump_key(rsa_key):

orint("Private parameters")
orint(f"D={rsa_key.d}")
orint(f"P={rsa_key.p}")
orint(f"Q={rsa_key.q}")
orint("Public parameters™")
orint(f"N={rsa_key.n}")
orint(f"E={rsa_key.e}")

orint ("==========================")

(code/example_1_rsa_hands_on.py)

Real example of RSA parameters (1024 bits)

Private parameters

D = 77614656301616714363940727332567567/52588763834923044263551118988/04659594604713263
50389/6089031658382193794736479535148436716921258023165599315212961676134453005072
5986827108953721558434941732038437591573053924491/5451012636495931760/7757682447820
942988657535279905936373267774215782242998025429793627422113

P = 981569/318162067921185342104987364526/7/34855983202779857592405629379966924732117737
15586961068632843455578/73306563227111028207859649430558922828531/6094089

1258946847070527326346197319207489981996279745720823219221414936239300384536095509
86925916569/7215232635581094515425149166/0003212969264/0121976969660208161

O
I

Public parameters

N = 1258946847070527326346197319207489981996279745720823219221235744119049876613244964
09285016232564691118238530592626869039820889/7/11/16151616920802900114105503684028/8
167372388205340047657135711057889/7/83956542652583652351606989/401/69498818606567641
270578863484599103723172886277118009531924346591366/961181683881952241148605548246
60954136393556092086822258328661660329

E = 65537

To go from the message 1 to a number in Z,, without
using any padding schemes we can directly use the
underlying bytes of the message.

For example

The

s T h e ascll

> 54 68 65 (basel6)

> 01010100 01101000 01100101 (base2)

» 5531749 (basel0)

After we have obtain the final number, we have to
reduce it modulo NV

The — 5531749 » 55631749 mod N

In our example

The tutor of CNS sucks at teaching

becomes

m = 2002081205180510485585787674763827799861583066412144329304354284188221575256436327

ENCRYPTION/DECRYPTION IN RSA

In RSA, encryption and decryption are done through
modular exponentiation.

a’ mod N

Some examples of modular exponentiation

e 210 mod 5=1024 mod 5 =4
5 mod 7=125 mod 7 = 6

In particular, when we want to encrypt a message m
using the public key (e, V'), we compute the following

m¢ mod N

In our case example this valueis

(250208 - - - 36327)%°°5" mod (1235 - - 0329)

Code to encrypt using RSA

def encryption_example(key, plaintext):
print (f"About to encrypt a new message")
orint(f"Plaintext:\n{plaintext}")
ciphertext = pow(plaintext, key.e, key.n)
print(f"Ciphertext:\n{ciphertext}")
print ("==========================")
return ciphertext

(code/example_1_rsa_hands_on.py)

Once we have the encrypted message, which is just a
number, we can transmit it over the network to the
recelver.

To get back the original message, the receiver will start
from the ciphertext message ¢ and use its own private
key d to compute

¢® mod N

Code to decrypt using RSA

def decryption_example(key, ciphertext):
print(f"About to decrypt a new message")
print(f"Ciphertext:\n{ciphexrtext}")
plaintext = pow(ciphertext, key.d, key.n)
print(f"Plaintext:\n{plaintext}")
print ("==========================")
return plaintext

(code/example_1_rsa_hands_on.py)

The mathematics of RSA guarantess that by doing this
computation we get back the original message m.

¢® mod N =m

Putting everything toget we get

def encryption_decryption_test():
key = generate_key(BIT_SIZE)
dump_Kkey (key)
m = b"The tutor of CNS sucks at teaching”
0 = bytes_to_long(m)
¢ = encryption_example(key, p)
02 = decryption_example(key, c)
assert p == p2, "Oops, we broke math”

(code/example_1_rsa_hands_on.py)

Let us now formalize what we saw...

RSA IN THEORY

RSA is a public-key based cryptographic system that
can be used for

e confidentiality
e integrity
e authentication

't was discovered in 1977 by

R — Rivest
S — Shamir
A — Adleman

RSA makes use of mathematical theorems taken from
number theory for

® correctness
* security

When working with RSA, the following holds:

When working with RSA, the following holds:

e Messages are seen as numbers.

When working with RSA, the following holds:

e Messages are seen as numbers.
e All work is done in a modular arithmetic.

When working with RSA, the following holds:

e Messages are seen as numbers.

e Allworkis done in a modular arithmetic.

e Encryption and decryption are implemented
through modular exponentiation.

Process of generating a public/private key in RSA

Process of generating a public/private key in RSA

1. We choose p and g, two big primes distant from eachothers.

Process of generating a public/private key in RSA

1. We choose p and g, two big primes distant from eachothers.

2. We compute N and (V) as
N =p-q
¢(N)=(p—-1)-(¢g—1)

Process of generating a public/private key in RSA

1. We choose p and g, two big primes distant from eachothers.

2. We compute N and (V) as
N=p-q
¢(N)=®—-1)-(g—1)
3. We choose e < ®(V) coprime with & (V).

Process of generating a public/private key in RSA

1. We choose p and g, two big primes distant from eachothers.

2. We compute N and (V) as
N=p-q
®(N)=(p—-1)-(¢g—1)
3. We choose e < ®(V) coprime with & (V).
4. We compute d by solving

d=e ' mod ®(N)

Here with @ (V) we mean Euler's totient function,
which simply counts the number of integers in
{1,2,..., N — 1} which are relatively prime to IV

If N = p - g, where p and g are primes, then
O(N)=(p—-1)-(¢g—1)

To encrypt a messagem € |0, IV) we use modular
exponentiation

c=m" mod N

To encrypt a messagem € |0, IV) we use modular
exponentiation

c=m" mod N

NOTE: Everyone can encrypt messages, as (e, IV) is
the public key.

To decrypt an encrypted message ¢ € |0, V) we
proceed once again with modular exponentiation

m=c* mod N

To decrypt an encrypted message ¢ € |0, V) we
proceed once again with modular exponentiation

m=c* mod N

NOTE: Only the owner of the private key d can decrypt
messages.

Let us now motivate two important aspects of RSA,
which are:

e correctness
e security

RSA CORRECTNESS

By correctness we mean the fact that we can use RSA
to encrypt and decrypt properly. That is, we want to
make sure that encryption is a revertable process.

In particular, remember the encryption procedure
c=m° mod N
When we decrypt we are computing a power of m

¢® mod N =(m)* mod N
—m®® mod N

Formally to have correctness we want

m¢® mod N=m mod N

The correctness of RSA relies on the Euler's Theorem

Given an integer a such that gcd(a, N') = 1, then

) =1 mod N

We know that the parameters were choosen such that
d=e ' mod ®(N)
which means that
e-d=1 mod P(NV)
That is, there exists k € Z such that
e-d=k-®(N)+1

Putting it all together

cd _ mk-(I)(N)Jrl mod N
a??™ =1 mod N — kW) mod N
— (m®*") . m mod N

= mfe mod N

- m mod N
mod N

e-d=k-®(N)+1 =

m
= (1)*-m mod N
1
m

SECURITY OF RSA

The security of RSA is based on the computational
Intractability of the factorization problem.

Remember, the public key of RSAis (IV, €).

Can an attacker use the public key to obtain the
private key?

By knowing only ([N, e), we're not able to compute

the private key d, because d was computed as the
solution of the following congruence

d=e ' mod ®(N)

To solve
d=e ' mod ®(N)

we need to know the value of ® (V).

And to know the value of (V) we need to know the
prime factors of [V, as

¢(N) =(P—-1)-(Q—1)

This requires being able to factorize [V into its prime
factors.

This also means that the security of our system
completely depends on the characteristics of the

choosen primes p and q.

To have a secure RSA the primes must be:

1. Very bigggggggg
2. Distant from eachothers

RSA SIGNATURE

RSA can also be used to sigh messages.

RSA can also be used to sigh messages (1/8)

Let d be our private key, and (e, IN') be our public key.

From a message m, we want to compute a signature
such that other entities can verity if our signature is
valid.

RSA can also be used to sigh messages (2/8)

To compute the signature of the message m we
encrypt it using our private key as follows

s=m® mod N

RSA can also be used to sigh messages (3/8)

This allows any other entity to check if the signature s
is valid for message m by using our private key (e, N)

as follows
¢ mod N —m 74 Yes > valid signature
" | no > invalid signature

RSA can also be used to sigh messages (4/8)

Instead of signing the entire message m, it is
preferable to first use an hash function, compute
H (m), and then sign the resulting value.

RSA can also be used to sigh messages (5/8)

m — H(m) — H(m)®* mod N

|

signature for m

RSA can also be used to sigh messages (6/8)

def compute_signature(msg, key):
nash_value = sha256(msg.encode('utt-8"))
oytes_value = codecs.decode(hash_value.hexdigest(), 'hex_codec')

nash_number = bytes_to_long(bytes_value) % key.n
signature_value = pow(hash_number, key.d, key.n)

return (msg, signature_value)

(code/example_2_rsa_signature.py)

RSA can also be used to sigh messages (7/8)

def verify_signature(signature, key):
(msg, sig_value) = signature

nash_value = sha256(msg.encode('utf-8"))
pytes_value codecs.decode(hash_value.hexdigest(), 'hex_codec')

nash_number = bytes_to_long(bytes_value) % key.n

signature_check = pow(sig_value, key.e, key.n)

1T hash_number == signature_check:
print("OK: Signature correctly verified!")

else:
print ("NOPE: Signature failed!")

(code/example_2_rsa_signature.py)

RSA can also be used to sigh messages (8/8)

def main():
global BIT_SIZE
key = RSA.generate(BIT_SIZE)
msg = "Hello World!"
signature = compute_signature(msg, key)
verify_signature(signature, key)

(code/example_2_rsa_signature.py)

FINAL OVERVIEW

Final recap of RSA Theory (1/4)

e RSA makes use of modular arithmetic
e RSA key requires two big and distant primes p, q
e Public parameters are (e, N) such that
“N=p-q
= gcd(e, P(INV)) =1

e Private parameter d obtained by solving

d=e ' mod ®(N)

Final recap of RSA Theory (2/4)

e Encryption and decryption implemented through
modular exponentiation.

e [0 encrypt
c=m° mod N

e To decrypt

m = ¢ mod /N

Final recap of RSA Theory (3/4)

e Digital signature implemented by encrypting with
private key.

s =H(m)* mod N

e To verify a digital signature (m, s) we use the public
key

s mod N ==H(m) ?

Final recap of RSA Theory (4/4)

e Security guaranteed as long as we cannot factorized
N into its prime factors p and q

RSA IN PRACTICE

Many things can go wrong when implementing RSA in
the real and scary world.

In the real world RSA is used a long side a padding
scheme such as:

e PKCS#1v1.5 (dangerous)
e OAEP

The PKCS#1v1.5 padding scheme has been found to

be vulnerable time and time again to a certain
padding oracle attack known as the

Bleichenbacher oracle attack

The PKCS#1v1.5 padding scheme has been found to

be vulnerable time and time again to a certain
padding oracle attack known as the

Bleichenbacher oracle attack

(maybe we will see it in a future lecture)

A small and incomplete list of possible RSA
iImplementation failures

e Primes too small
e Primes too close together
s Fermat's Factorization Algorithm
e Primes with specific forms
= ROCA attack
e Small public esponent
= Bleichenbacher '06 Signature Forgery
e Padding oracle attacks
= Bleichenbacher attack on PKCS#1v1.5
= Manger's attack on OAEP

Fermat Attack by Hanno Bock (Marh 2022)

Who is affected?

Multiple printers of the Fujifilm Apeos, DocuCentre and DocuPrint series generate
self-signed TLS certificates with vulnerable RSA keys. The Fuji Advisory contains a list
of all affected printers. (The printers use the brand name Fuji Xerox, but the company

has since been renamed to Fuijifilm.)

Some Canon printers have the ability to generate a Certificate Signing Request with a
vulnerable RSA key. To my knowledge this affects printers of the imageRUNNER and

ImagePROGRAF series.

https://fermatattack.secvuln.info/

ONE DOES NOT SIMPLYAR &

{7a

\

N C, “'/*t p
‘ AMPLEMENT RSA
EFFICGIENTLY AND_SEG“HEIY

To practice with some RSA related CTF | highly suggest
the cryptohack website

CRYPTOHACK

A fun, free platform for learning modern
cryptography

https://cryptohack.org/

CTF 01 - FACTORING

RSA - PRIMES PART 1 - Factoring

v'7 Factoring 15 pts -

S0 far we've been using the product of small primes for the modulus, but small primes aren't much good for RSA as they can be factorised using

What is a "small prime"? There was an with cash prizes given to teams who could factorise RSA moduli. This gave insight to
the public into how long various key sizes would remain safe. Computers get faster, algorithms get better, so in cryptography it's always prudent to err
on the side of caution.

These days, using primes that are at least 1024 bits long is recommended—multiplying two such 1024 primes gives you a modulus that is 2048 bits
large. RSA with a 2048-bit modulus is called RSA-2048.

Some say that to really remain future-proof you should use RSA-40%96 or even RSA-8192. However, there is a tradeoff here; it takes longer to generate
large prime numbers, plus modular exponentiations are predictably slower with a large modulus.

Factorise the 150-bit number 518143758735509825530880200653196460532653147 Into Iits two constituent pnmes. Give the smaller one as your answer.

Resources;

https://cryptohack.org/challenges/rsa/

In the challenge we are asked to factorize the following
150 bit number into its two-constituent primes.

N = 510143758735509025530880200653196460532653147

To solve the challenge we can use sage, and open-
source mathematical system which can be used to
solve many mathematical problems.

;\‘ Blog - Trac - Wiki - Questions? - ¥ Sponsor - Donate
"h “ 5 m E Online: CoCalc - SageCell or Install, Clone

N

EcC. Language v

Home Tour Help Library Download Development Links

SageMath is a free open-source mathematics software system licensed under the GPL. It builds on top of

many existing open-source packages: NumPy, SciPy, matplotlib, Sympy, Maxima, GAP, FLINT, R and many more.
Access their combined power through a common, Python-based lanqguage or directly via interfaces or
wrappers.

Mission: Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab.

Learn how to use SageMath:
Sage for Undergraduates by Gregory Bard (Spanish: Sage para Estudiantes de Pregrado)

Mathematical Computation with Sage by Paul Zimmermann et al.
(French: Calcul mathématique avec Sage, German: Rechnen mit Sage)

Installing sage

sudo apt install sagemath
yay -S sagemath

Using sage

[leo@ragnar ~]$%$ sage

SageMath version 9.7, Release Date: 2022-09-19
Using Python 3.10.8. Type "help()" for help.

sage: F = Tactor(510143758735509025530880200653196460532653147)
sage: F
19704762736204164635843 * 25889363174021185185929

In a few seconds we can break a 150 bit composite
number into its factor components

19704762736204164635843 - 25889363174021185185929 =
5010143758735509025530880200653196460532653147

CTF 02 - MONOPRIME

RSA - PRIMES PART 1 - Monoprime

7 Monoprime

Why is everyone so obsessed with multiplying two primes for RSA. Why not just use one?

Challenge files:

https://cryptohack.org/challenges/rsa/

If we use only 1 prime N = p, then we can easily
compute ®(V) as

®(N)=%(p)=p—1

and therefore easily compute

d=e ' mod ®(p)

Using the challenge parameters and sage we obtain

sage: N = 17173137121806544412548253630224591541560331838028039238529
: 391026499532601025126849363050198981085541841664335263110243431

: 336593094330808663429193684650586120391444933800//60990051/8898

sage: R = IntegerModRing(N-1)
sage: R(65537)A(-1)
490795822651992884701815448516268061665051826184087118631691425778747

In particular we get

D = 4907/958226519928847/0181544851626806166505182618408/118631691
42577874702366126236991/7225953942292907935831368427508499957
5821686811571024412404171669352/77781219852693100/32034959398
98100148598423191852848173730499362861995028159095/7823516049

7120734905369125242364673900799549507071229132182301963125535
4109583

With the private key we're able to decrypt our text

[leo@ragnar 3_monoprime]$ python

Python 3.10.8 (main, Oct 13 2022, 21:13:48) [GCC 12.2.0] on linux

Type "help", "copyright", "credits"” or "license" for more information.

>>> from Crypto.Util.number import bytes_to_long, long_to_bytes

>>> D = 490795822651992884701815448516268061665051826184087118631691425778747023
86811571024412404171669352777812198526931007320349593989810014859842319185284817
3646739007995495070712291321823019631255354109583

>>> N = 171731371218065444125482536302245915415603318380280392385291836472299752
84936305019898108554184166433526311024343179000286979932248686299356572730624725
007760990051788980485462592823446469606824421932591

>>> CT = 16136755034673060445145475618902893896494128034766209879877546601946337
21011578171525759600774739890458414593857709994072516290998135846956596662071379
6260758515864509435302781735938531030576289086798942

>>> PT = pow(CT, D, N)

>>> long_to_bytes(PT)

b'crypto{@n3_prim3_41n7_prim3_101}"

The flagis
crypto{On3_prim3_41n7_prim3_101}

