
CNS Lab 03 – CBC Padding

Oracle on PKCS#7

Leonardo Tamiano

November 3, 2022

1 CBC Padding Oracle

The attack we will consider in the following notes is the CBC padding oracle

attack. First published in 2002 by Serge Vaudenay [4], the CBC padding

vulnerability has had a big impact on TLS and other cryptographic imple-

mentations. Even after a lot of attention was devoted to fix it, AlFardan and

Paterson showed that the vulnerability was still exploitable by performing a

new version of the attack named Lucky 13 [1]. After almost two years, in

October 2014, another version of the CBC padding oracle was discovered by

a Google Security Team in SSLv3. The attack was called the POODLE at-

tack [3] and nowadays SSLv3 is considered cryptographically broken because

of the existence of such attack.

The CBC padding oracle attack exploits all those cryptographic imple-

mentations that use block ciphers in CBC mode and that offer no integrity

mechanisms to protect the padding. In these cases, if the attacker is able to

perform a choosen ciphertext attack (CCA) in a way that leaks information

regarding the correctness of the padding in the decrypted message, then the

attacker is also able to decrypt and encrypt arbitrary data with a clever

exploitation of the CBC construction.

This attack has plagued many TLS implementations, because in the early

design of SSL, the precusor of TLS, it was decided to implement a MAC-

THEN-ENCRYPT scheme to protect the integrity and confidentiality of the

messages sent in the TLS session. The consequence of this decision is that

when confidentiality is granted through the usage of block ciphers, such

as CBC-AES, given that padding is added only after the MAC has been

computed, there is no integrity protection for the padding. Ultimately, this

enables an attacker to change the padding portion of the message during

transport without being recognized.

In 2014 a new TLS extension named ENCRYPT-THEN-MAC was intro-

2

duced with RFC 7366 [2]. This extension changes the order of operations so

that the padding is included in MAC computation in order to also preserve

the padding’s integrity during transport. With this new scheme the server is

immediately able to recognize if an external attacker has changed the original

padding and act accordingly.

We will now proceed by discussing the vulnerability with mathematical

detail. This will allow us to solve a challenge which includes a AES-CBC

construction vulnerable to a PKCS#7 padding oracle.

1.1 The Problems of Mac-then-Encrypt

To understand the problem of MAC-THEN-ENCRYPT we have to briefly

review how encryption and integrity are guaranteed in TLS when block ci-

phers are used. When using block ciphers in TLS the following steps are

taken:

• First, a MAC is computed on the following aggregated data:

– The sequence number of the TCP packet which will encapsulate

the TLS record packet.

– The TLS header of the TLS record packet, which in particular

contains the type, version and length field of the TLSPlaintext

structure shown previously.

– The plaintext data to be sent within the TLS record packet.

• Then, an optional padding is added to make sure that the data to be

encrypted, which is the combination of plaintext data and MAC, is a

multiple of the block size.

• An IV is generated of the same length as the block size to be used, and

CBC mode is used along with the specific block cipher agreed in the

handshake phase to encrypt plaintext, MAC, and padding.

• At this point the final packet, which consists of the header information,

the IV used and the ciphertext, can be sent to the other endpoint.

3

This construction is technically known as a MAC-THEN-ENCRYPT con-

struction, because first the MAC is computed on the plaintext data, and then

both the plaintext data and the MAC are encrypted to form the ciphertext.

The actual padding used in TLS for block ciphers is the PKCS #7 padding

scheme, which works by appending n bytes each of value n to the message

until enough bytes for an entire block are obtained. To make things clearler,

consider the case of AES, which has a block size of 16 bytes, and suppose

we want to encrypt the message m = A2 BC 00 4A. Then, when using this

padding scheme, we would need to add 16− 4 = 12 bytes, each of which will

have the value 0B. This means that the final plaintext will be

plaintext︷ ︸︸ ︷
A2 BC 00 4A

padding︷ ︸︸ ︷
0B 0B 0B 0B 0B 0B 0B 0B 0B 0B 0B 0B

Consider now the typical CBC construction already shown in the previous

challenge.

and suppose we are able to find an oracle on the server that takes in input

a ciphertext, and gives as output a binary outcome, depending on whether

the ciphertext, when decrypted, transforms into a plaintext with a correct

PKCS #7 padding or not.

More specifically, let P be the plaintext associated with the ciphertext C.

We can assume to have a function O(C) such that

4

O(C) =

{
1 , P is correctly padded according to PKCS # 7

0 , otherwise

We will also denote with P j the j th byte of a given plaintext block. The

same applies for cipher blocks, so that Cj will be the j th byte of the cipher

block.

Given the situation just described, an attacker is able to execute an efficient

attack which allows for the decryption and encryption of all blocks starting

from the second one onwards. Let C0, C1, C2 be the various blocks, and let

IV be the initialization vector used to boostrap the CBC construction. Our

objective now is to describe how an attacker is able to decrypt C1. To this

end, consider only the first two blocks and the IV

C := IV , C0 , C1

Let M1 be the plaintext corresponding to C1. To understand if the last

byte of M1 is a given value, say A, the attacker constructs a new C
′

0, which

is equal to C0 for all but the last byte, and the last byte of C
′

0 is obtained by

XORing the last byte of C0 with A⊕ 01. Specifically, if n is the byte length

of the block cipher, we have

C
′

0 := C1
0 , C2

0 , C3
0 , . . . Cn−1

0 , Cn
0 ⊕ A⊕ 1

With this new block the attacker is able to construct the following new

ciphertext

C
′
:= IV , C

′

0 , C1

Suppose now the attacker sends this ciphertext to the oracle, and the

oracle replies with O(C
′
) = 1. What can the attacker infer about the guess

made on the last byte of M1? If O(C
′
) = 1, then, by definition, the padding

of the plaintext M
′
is correct. Notice also that by following the decryption

process of the CBC construction

5

the last byte of M
′
, which is equivalent of saying the last byte of M

′

1 is

obtained by XORing together the last byte of C
′

0 with the last byte obtained

by applying the decryption procedure to the cipertext C1. In other words,

(M
′

1)
n = (C

′

0)
n ⊕ (DEC(K,Cn))

n

Given that the padding is correct, it must mean that this last byte is

exactly 1

(M
′

1)
n = (C

′

0)
n ⊕ (DEC(K,Cn))

n

= Cn
0 ⊕ A⊕ 1⊕ (DEC(K,Cn))

n

= 1

For this to be the case we need that

(DEC(K,Cn))
n = Cn

0 ⊕ A

Which means that the last byte of the original plaintext M1 is exactly A.

So, to recap, we have shown that if the oracle replies to us with the value 1,

then we know that our guess is correct.

What if instead the oracle replies to us with the value 0? Then the padding

is not correct, which means that the guess we made on the last byte of M1

was not correct.

6

The idea of the attack then is to perform an iterative attack, trying all

256 values for the last byte of M1, until we find the correct byte and get a

correct padding message from the oracle. After discovering the first byte,

say it is the byte C, we can then discover the second. This time the new

ciphertext block C
′

0 will be constructed as follows for a new guess A

C
′

0 := C1
0 , C2

0 , C3
0 , . . . , Cn−1

0 ⊕ A⊕ 2 , Cn
0 ⊕ C ⊕ 2

Notice how this time the last two bytes of the original C0 change. By

iterating this attack, we can break k bytes with 256 · k requests.

We are now ready to face the third and final challenge.

1.2 Challenge # 3: Yet Another Oracle

This challenge is made up of two python scripts: a private script, secret.py,

that contains the a secret flag, and a TCP server server.py, that implements

a CBC padding oracle using the padding scheme PKCS # 7. While the se-

cret.py file should not be disclosed, as it contains the secret flag, the code for

the server server.py should be made public. The objective of the challenge is

to write another script, called solution.py, which implements a CBC padding

oracle attack and which allows us to decrypt the flag value in order to solve

the challenge.

[leo@archlinux challenge_3] ls -lha

totale 16K

drwxr -xr-x 2 leo users 4,0K 26 mag 22.06 .

drwxr -xr-x 7 leo users 4,0K 26 mag 22.06 ..

-rw -r--r-- 1 leo users 14 26 mag 21.19 secret.py

-rw -r--r-- 1 leo users 2,2K 26 mag 21.18 server.py

In terms of dependencies, once again the only dependency is the pcryptodome

library, which can be installed with pip as follows

pip install pycryptodome ==3.14.1

7

As we have done for the previous challenges, before reading the code let us

understand how the challenge works in with a black-box approach. Starting

the server.py script we see the following output

[leo@archlinux challenge_3] python3 server.py
[INFO] - Start of challenge: Yet Another Oracle
[INFO] - Listening on 4444...

By connecting with a TCP client such as nc to the given port of the

localhost interface, we get

Hi, I ’ ve been t o l d to show you t h i s .
====================================

ENCRYPTED FLAG WITH CBC−AES: eB93iBsbwI6bGwZXpjF+
SeolzIvMx4bL7Erkl0qsNao=

>

As we can see, we see the encrypted flag, and we are told that it was

encrypted with the AES block cipher in CBC mode. We also see the start

of a prompt. By playing with it a bit we see the following behavior

Hi, I ’ ve been t o l d to show you t h i s .
====================================

ENCRYPTED FLAG WITH CBC−AES: eB93iBsbwI6bGwZXpjF+
SeolzIvMx4bL7Erkl0qsNao=

> a
NOPE
> h e l l o
NOPE
> 09 jsd8H0CdmrtxXpSjk9lwQ/UNPgxiCwMZyWY1dZ0tc=
OK!
>

Notice how this behavior is very similar to the first challenge, where we

had on oracle on the PCKS#1 v1.5 padding of RSA encrypted messages.

If we send random bytes, we get a “NOPE”, but if we send exactly the

8

original encrypted message, we get an “OK!” back. This suggests that the

server implements some kind of checks, and if those checks are passed, then

we get the positive outcome “OK!”, otherwise we get the negative outcome

“NOPE”. Given the binary output, looks like we have an oracle.

To understand if our deduction was correct, we can now view the code for

the challenge.

As usual, the server.py script starts off by importing various libraries as

well as the FLAG variable from the secret.py file, which is not available to

us.

#!/usr/bin/env python3

import binascii
import socketserver
import signal
import time
from hashlib import md5
from base64 import b64decode
from base64 import b64encode

from Crypto.Cipher import AES
from Crypto.Random import get_random_bytes
from Crypto.Util.Padding import pad , unpad

from secret import FLAG

After that we see the definition of a series of global variables

IV = None
KEY = None
CIPHER = None
ENCRYPTED_FLAG = None

If we jump at the end of the script, we see that when invoked directly from

the command line the script executes the challenge 3 main() function

if __name__ == ” ma in ”:
challenge_3_main ()

9

The function generates a random IV and KEY and then instantiates a

new cipher using the block cipher AES in CBC mode. After that the flag is

encrypted and a TCP server is started on port 4444.

def challenge_3_main ():
global IV, KEY , CIPHER , ENCRYPTED_FLAG

IV = get_random_bytes(AES.block_size)
KEY = get_random_bytes(AES.block_size)
CIPHER = AES.new(KEY , AES.MODE_CBC , IV)

data_to_encrypt = b”A” * 16 + FLAG
ENCRYPTED_FLAG = b64encode(CIPHER.encrypt(pad(data_to_encrypt ,

AES.block_size)))

print(” [INFO] − Sta r t o f c h a l l e n g e n . 3 : Yet Another Orac le ”)
print(” [INFO] − L i s t e n i n g on 4 4 4 4 . . . ”)

socketserver.TCPServer.allow_reuse_address = True
server = ReusableTCPServer ((” 0 . 0 . 0 . 0 ”, 4444), incoming)
server.serve_forever ()

Notice how before encryptign the flag, 16 bytes were appended before the

bytes of the flag itself. This is done because, as we explained previously, when

executing a CBC padding oracle the first block cannot be attacked whenever

the attacker is not able to see the IV used, and only the subsequent blocks

are vulnerable.

As always, the TCP implementation is standard and it uses the ReusableTCPServer

class

class incoming(socketserver.BaseRequestHandler):
def handle(self):

signal.alarm (300)
req = self.request
while True:

challenge(req)

class ReusableTCPServer(socketserver.ForkingMixIn , socketserver.
TCPServer):

pass

The most important function is the challenge function, which is executed

as soon as the user connects to the server of the challenge. The first thing

10

the function does is send in the TCP socket the initial welcoming message

with the encrypted flag

def challenge(req):
global IV, KEY , CIPHER , ENCRYPTED_FLAG

req.sendall(b ’ Hi , I \ ’ ve been t o l d to show you t h i s .\ n ’ +\
b ’====================================\n\n ’ +\
b ’ENCRYPTED FLAG WITH CBC−AES: ’ +\
ENCRYPTED_FLAG + b ’ \n\n> ’)

time.sleep (0.2)

Then the server starst to listen for the user data, and whenever the user

sends something, the function oracle() is called, and a response is prepared

according to its output: if the function returns True, then the server sends

back “OK!” to the client, otherwise it sends “NOPE”.

while True:
try:

client_payload = req.recv (4096)
if len(client_payload) > 0:

oracle_output = oracle(client_payload)
if oracle_output == True:

req.sendall(b ’OK!\ n> ’)
else:

req.sendall(b ’NOPE\n> ’)
except Exception as e:

print(e)
exit()

To finish off, the function oracle is the function that, as the name suggest,

implements the actual CBC padding oracle.

def oracle(payload):
try:

payload = b64decode(payload)
CIPHER = AES.new(KEY , AES.MODE_CBC , IV)
decrypted_payload = CIPHER.decrypt(payload)
unpadded_payload = unpad(decrypted_payload , AES.block_size)
return True

except ValueError as e:
return False

11

The payload of the client is base64 decoded, and then its decrypted using

the same IV and KEY used for encrypting the flag. Notice how the function

unpad is used to remove the PKCS #7 padding. If the function fails because

the plaintext is not correctly padded, a ValueError exception is thrown, and

the oracle returns False. Otherwise, if everything goes according to plan and

if the plaintext is correctly padded, then the oracle returns True.

As we had previously deducted, we can now be certain that the server

implements a CBC padding oracle with PKCS #7 padding. This leads us

inevitably to the solution, which will be written in another python script

named solution.py.

The solution starts off by importing various libraries, many of which were

also imported by the server.

#!/usr/bin/env python3

import binascii
import socketserver
import signal
import time
import socket
import string
from hashlib import md5
from base64 import b64decode
from base64 import b64encode

from Crypto.Cipher import AES
from Crypto.Random import get_random_bytes
from Crypto.Util.Padding import pad , unpad

Then we define a series of global variables

HOST = ” 1 2 7 . 0 . 0 . 1 ”
PORT = 4444
SOCK = None
ENCRYPTED_MSG = None
BLOCK_SIZE = 16

Notice in particular the BLOCK SIZE variable, which contains the num-

ber of bytes in each block of the block ciphers that we want to attack. Given

12

that the server uses the AES block cipher, and that AES mainly works with

block of 16 bytes, we set the variable also to 16. The SOCK variable instead

is used to interact with the server.

Continuing, we find the query oracle() function, which implements the

main abstraction used to interact with the server.

def query_oracle(payload):
global SOCK

encoded_payload = b64encode(payload)
SOCK.send(encoded_payload)
oracle_reply = SOCK.recv (4096)

if b”OK” in oracle_reply:
return True

else:
return False

As we can see, the function is used to send arbitrary payloads. It assumes

to receive bytes in input, and so, before sending them, it encodes them in

base64. After the payload is sent, the function waits for the server reply, and

depending on the reply it either returns True, when the server replies with

“OK”, or it returns False, when the server replies with “NOPE”.

Then we find the decrypt block() function. This function takes three in-

puts: the encrypted text to decrypt, an index n which tells which block of

the encrypted text we want to decrypt, where the first block is indexed by 1,

the second by 2 and so on. The third and last argument of the function is an

optional argument called block size, which is used to specify the size of each

block. Given that the attacker cannot decrypt the first block, the function

quits whenever the n argument is less than or equal to 1.

def decrypt_block(encrypted_text , n, block_size =8):
""" Decrypts the n-th block of the encrypted_text """
assert n > 1, ”Cannot decrypt f i r s t b lock as we don ’ t know the

IV”

The first thing that the function does is check whether or not the block

we want to decrypt is the last one or not.

13

last_block = True if int(len(encrypted_text) / block_size) == n
else False

This check is done because the last block is the only block that is properly

padded by default, and if not properly handled it could cause a false positive

answer when guessing the last byte with the values of 0x00 or 0x01, since

then the effect of the XOR operation would effectively cancel itself, the

encrypted payload would be the same as the original one, and therefore

the server would reply to us with a false positive “OK”.

Continuing, we save in the saved bytes variable the block that sits right be-

fore the one we want to decrypt, and we initialize another variable guess so far

that will hold pieces of the plaintext obtained when decrypting the block. As

the decryption continues, the guess so far will expand until the whole block

is completely decrypted.

saved_bytes = bytes(encrypted_text[block_size * (n-2):
block_size * (n-1)])

guess_so_far = [0] * block_size

At this point we have the main loop of the attack, which in a way is

very similar to the nested loop implemented for the BEAST attack in the

previous challenge. The outer loop goes over all bytes of the block we want

to decrypt. For each byte we have have an inner loop that goes over all the

256 possibilities for that byte.

for i in range(0, block_size):
msg = list(encrypted_text [: block_size * n])
found = False
for c in range(0, 256):

if last_block and i == 0 and c == 1:
continue

The first we do in the inner loop is to check if we are in the last block, so

as to avoid false positive that could ruin the entire decryption process.

Then we compute the new correct value for the padding, we insert our

guess in the current guess for the block, and we prepare the message to send

to the server depending on how far we are in the decryption of the current

block

14

for j in range(0, i + 1):
global_index = block_size * (n - 1) - j - 1
relative_index = block_size - j - 1
msg[global_index] = saved_bytes[relative_index] ^ guess_so_far[

relative_index] ^ padding

After the message is prepared, we send it to the server, and depending on

the answer we set the variable found to true and we break out of the loop

after printing to the screen the byte that was found.

if r:
found = True
if chr(c) in string.printable:

print(f” [{ n }] : byte { b l o c k s i z e − i } i s : { c } , { chr (c) }”)
else:

print(f” [{ n }] : byte { b l o c k s i z e − i } i s : { c } , non−
p r i n t a b l e byte ”)

break

Having exited from the inner loop, we finish to handle the special case

when the block to decrypt is the last one.

if not found and last_block and i == 0:
guess_so_far[block_size - 1 - i] = 1

At the end of the outer-loop, after all the characters have been found, we

return the decrypted block

return guess_so_far

To finish off the solution, the only function that needs to be discussed is

the challenge 3 solution main() function, which puts all the pieces together.

The function starts by connecting to the server TCP socket and extracting

the encrypted flag.

15

def challenge_3_solution_main ():
global HOST , PORT , SOCK , ENCRYPTED_MSG , BLOCK_SIZE

SOCK = socket.socket(socket.AF_INET , socket.SOCK_STREAM)
SOCK.settimeout (300)
SOCK.connect ((HOST , PORT))

server_data = SOCK.recv (4096)
start_delimiter = b”\n\nENCRYPTED FLAG WITH CBC−AES: ”
end_delimiter = b”\n\n> ”
i = server_data.find(start_delimiter) + len(start_delimiter)
j = server_data.find(end_delimiter)

ENCRYPTED_MSG = server_data[i:j]

Then the number of total blocks of the encrypted flag are computed, and,

starting from the second block onwards, each block is decrypted using the

decrypt block function.

encrypted_msg_bytes = b64decode(ENCRYPTED_MSG)
num_blocks = int(len(encrypted_msg_bytes) / BLOCK_SIZE)
plaintext = []
for i in range(2, num_blocks + 1):

plaintext += decrypt_block(encrypted_msg_bytes , i,
block_size=BLOCK_SIZE)

Once we have all the plaintext, we can simply print it and close the socket

plaintext = ””.join(map(lambda x : chr(x), plaintext))
print(f” P l a i n t e x t obta ined i s : { p l a i n t e x t }”)

SOCK.close ()

And this concludes the solution.

if __name__ == ” ma in ”:
challenge_3_solution_main ()

By executing the solution we get the following output

16

[leo@archlinux challenge_3] python3 solution.py
[2]: byte 16 is: 84, T
[2]: byte 15 is: 80, P
[2]: byte 14 is: 49, 1
[2]: byte 13 is: 82, R
[2]: byte 12 is: 67, C
[2]: byte 11 is: 78, N
[2]: byte 10 is: 51, 3
[2]: byte 9 is: 45, -
[2]: byte 8 is: 78, N
[2]: byte 7 is: 51, 3
[2]: byte 6 is: 72, H
[2]: byte 5 is: 84, T
[2]: byte 4 is: 45, -
[2]: byte 3 is: 67, C
[2]: byte 2 is: 52, 4
[2]: byte 1 is: 77, M
[3]: byte 16 is: 3, non -printable byte
[3]: byte 15 is: 3, non -printable byte
[3]: byte 14 is: 3, non -printable byte
[3]: byte 13 is: 83, S
[3]: byte 12 is: 85, U
[3]: byte 11 is: 48, 0
[3]: byte 10 is: 82, R
[3]: byte 9 is: 51, 3
[3]: byte 8 is: 71, G
[3]: byte 7 is: 78, N
[3]: byte 6 is: 52, 4
[3]: byte 5 is: 68, D
[3]: byte 4 is: 45, -
[3]: byte 3 is: 83, S
[3]: byte 2 is: 49, 1
[3]: byte 1 is: 45, -
Plaintext obtained is: M4C -TH3N -3NCR1PT -1S-D4NG3R0US

As we can see, the final flag is

“M4C-TH3N-3NCR1PT-1S-D4NG3R0US”

17

2 Bibliography

[1] Nadhem J. Al Fardan and Kenneth G. Paterson. “Lucky Thirteen:

Breaking the TLS and DTLS Record Protocols”. In: 2013 IEEE Sym-

posium on Security and Privacy. 2013, pp. 526–540. doi: 10.1109/SP.

2013.42.

[2] Peter Gutmann. Encrypt-then-MAC for Transport Layer Security (TLS)

and Datagram Transport Layer Security (DTLS). RFC 7366. Sept. 2014.

doi: 10.17487/RFC7366. url: https://www.rfc-editor.org/info/

rfc7366.

[3] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. “This POODLE

Bites: Exploiting The SSL 3.0 Fallback”. In: 2014.

[4] Serge Vaudenay. “Security Flaws Induced by CBC Padding - Appli-

cations to SSL, IPSEC, WTLS ...” In: Proceedings of the International

Conference on the Theory and Applications of Cryptographic Techniques:

Advances in Cryptology. EUROCRYPT ’02. Berlin, Heidelberg: Springer-

Verlag, 2002, 534–546. isbn: 3540435530.

18

