
Breaking PRNGs for Fun
and Profit

On Linear Congruential Generators

LEONARDO TAMIANO

TABLE OF CONTENTS
Introduction
What is Randomness?
And Pseudo-Randomness?
A First PRNG: Middle Square Method
A Second PRNG: Linear Congruential Generator
So, now what?

INTRODUCTION

Hello.

$ WHOAMI

I'm Leonardo Tamiano, a PhD researcher here at Tor
Vergata.

I work with professor Giuseppe Bianchi and I will be
your teaching assistant for

Sicurezza delle Infrastrutture ICT (SII)

Teaching material such as slides, code, exercises and
general material can be found at the following URL

https://teaching.leonardotamiano.xyz/university/2022-2023/sii

https://teaching.leonardotamiano.xyz/university/2022-2023/sii

For doubts and questions, I'm available a�er lectures.

Also, feel free to send me emails to the following email
address

But, please, put the following in the subject line

leonardo.tamiano@cnit.it

[SII]

Today we will try to make sense of randomness
True Random Number Generators (TRNGs)
Pseudorandom Number Generators (PRNGs)
Cryptographically Secure Pseudorandom Number Generators (CSPRNGs)

WHAT IS RANDOMNESS?

Many applications require the generation of random
numbers for various purposes:

Generation of cryptographic material
Simulation and modelling of complex systems
Sampling from large data sets

Cool, but…

what exactly is randomness?

What exactly is randomness?

For example, are these random numbers?

1338 → 890 → 1632

→ 1144 → 918 → 2068

→ 878 → 1002 → 1386

→ ??? → ??? → ???

For example, are these random numbers?

1338 → 890 → 1632
→ 1144 → 918 → 2068
→ 878 → 1002 → 1386
→ ??? → ??? → ???

Are you able to continue the sequence?

For example, are these random numbers?

1338 → 890 → 1632
→ 1144 → 918 → 2068
→ 878 → 1002 → 1386
→ ??? → ??? → ???

Are you able to continue the sequence?

Are you able to correctly predict the next number?

Those numbers were generated starting from the
names of Metro B subway stations in Rome, from

"Laurentina" to "Termini"

From station names to numbers (1/4)

1. From the metro station name to a sequence of
numbers using the underlying ASCII encoding.

2. Combine these numbers with mathematical
operations.

From station names to numbers (2/4)

Metro station names numbers, using the
underlying ASCII encoding

⟶

T

m

i

⟶ 84 , e

⟶ 109 , i

⟶ 105

⟶ 101 , r

⟶ 105 , n

⟶ 114

⟶ 110

From station names to numbers (3/4)

Then, we combine those numbers with basic
mathematical operations.

109 ⊕ 84 = (1101101 ⊕ (1010100)2)2

= (0111001)2

= 57

From station names to numbers (4/4)

For example,

Hi⟶ 72 105

⟶ ((((0 ⊕ 72) + 72) ⊕ 105) + 105)

⟶ (((72 + 72) ⊕ 105) + 105)

⟶ ((144 ⊕ 105) + 105)

⟶ (249 + 105)

⟶ 354

This is the relevant code

(code/subway2seq.py)

#!/usr/bin/env python3

subway_B = ["laurentina", "EUR Fermi", "EUR Palasport", "EUR Magliana",

 "Marconi", "Basilica S. Paolo", "Garbatella", "Piramide",

 "Circo Massimo", "Colosseo", "Cavour", "Termini"]

def station_to_number(station_name):

 result = 0

 for c in station_name:

 result = (result ^ ord(c)) + ord(c) #!

 return result

if __name__ == "__main__":

 for metro_station in subway_B:

 print(station_to_number(metro_station))

[leo@ragnar code]$ python3 subway2seq.py

1338

890

1632

1144

918

2068

878

1002

1386

1078 <---

824 <---

912 <---

We are thus able to complete the sequence

1338 → 890 → 1632

→ 1144 → 918 → 2068

→ 878 → 1002 → 1386

→ 1078 → 824 → 912

We are thus able to complete the sequence

1338 → 890 → 1632
→ 1144 → 918 → 2068
→ 878 → 1002 → 1386
→ 1078 → 824 → 912

Weird but completely deterministic pattern

We are thus able to complete the sequence

1338 → 890 → 1632
→ 1144 → 918 → 2068
→ 878 → 1002 → 1386
→ 1078 → 824 → 912

Weird but completely deterministic pattern

Definitely not random!

Q: What is randomness? (1/5)

A1:

"Something is random if and only if it happens by
chance"

Q: What is randomness? (1/5)

A1:

"Something is random if and only if it happens by
chance"

Reaction: no sh!t, Sherlock.

Q: What is randomness? (1/5)

A1:

"Something is random if and only if it happens by
chance"

Reaction: no sh!t, Sherlock.

What do you mean with "chance"?

Q: What is randomness? (2/5)

A2:

"scientists use chance, or randomness, to mean that
when physical causes can result in any of several

outcomes, we cannot predict what the outcome will be
in any particular case." (Futuyma 2005: 225)

Q: What is randomness? (2/5)

A2:

"scientists use chance, or randomness, to mean that
when physical causes can result in any of several

outcomes, we cannot predict what the outcome will be
in any particular case." (Futuyma 2005: 225)

Reaction: blah, blah, blah…

Q: What is randomness? (3/5)

Hard to define precisely.

Q: What is randomness? (4/5)

Practical definition:

Randomness is something that is "hard" to predict.

Q: What is randomness? (5/5)

As a consequence,

truly random numbers are hard to generate!

And here comes the first term

TRNG⟶ Truly

⟶ Random

⟶ Number

⟶ Generator

TRNGs sample phenomena from the physical world to
generate values that are "pratically" unpredictable.

Some examples:

Nuclear decay
Atmospheric noise
…

AND PSEUDO-RANDOMNESS?

So far we have:

So far we have:

1. Random numbers are hard to generate

So far we have:

1. Random numbers are hard to generate
2. Yet, we still need to generate random numbers

So far we have:

1. Random numbers are hard to generate
2. Yet, we still need to generate random numbers

How to bridge this gap?

So far we have:

1. Random numbers are hard to generate
2. Yet, we still need to generate random numbers

How to bridge this gap?

How can computers generate randomness?

MAIN IDEA: use an approximation!

Consider the following sequence of numbers

Consider the following sequence of numbers

292616681 → 1638893262 → 255706927 → …

Consider the following sequence of numbers

292616681 → 1638893262 → 255706927 → …

Do you see any pattern?

While these numbers do look random, they are
generated through a completely deterministic process

using a PRNG

292616681 → 1638893262 → 255706927 → …

PRNG⟶ Pseudo Random Number Generator

The previous numbers can be generated
deterministically with the following C code

(code/rand_example.c)

#include <stdlib.h>

#include <stdio.h>

int main(void) {

 srand(1337);

 int n = 10;

 for (int i = 0; i < n; i++) {

 printf("%d\n", rand());

 }

 return 0;

}

292616681 → 1638893262 → 255706927 → …

[leo@ragnar code]$ gcc rand_example.c -o rand_example

[leo@ragnar code]$./rand_example

292616681

1638893262

255706927

995816787

588263094

1540293802

343418821

903681492

898530248

1459533395

The sequence generated by a PRNG is completely
determined by internal state of the PRNG and the

initial seed value, which initializes the internal state

seed⟶ PRNG⟶ , , …output0 output1

C rand() with different seeds

1337

5667

42

⟶

⟶

⟶

292616681,

1971409024,

71876166,

1638893262,

815969455,

708592740,

255706927, …

1253865160

1483128881

This is the idea behind PRNGs and, more in general,
pseudo-randomness and pseudo-random sequences:

This is the idea behind PRNGs and, more in general,
pseudo-randomness and pseudo-random sequences:

having a sequence of numbers that looks random

This is the idea behind PRNGs and, more in general,
pseudo-randomness and pseudo-random sequences:

having a sequence of numbers that looks random
yet it is completely determined by

This is the idea behind PRNGs and, more in general,
pseudo-randomness and pseudo-random sequences:

having a sequence of numbers that looks random
yet it is completely determined by

an underlying algorithm

This is the idea behind PRNGs and, more in general,
pseudo-randomness and pseudo-random sequences:

having a sequence of numbers that looks random
yet it is completely determined by

an underlying algorithm
the initial seed value

Some important terms in the context of PRNGs:

state: total amount of memory that is used
internally by the PRNG to generate the sequence of
numbers.
period: a�er how many numbers the PRNG resets to
its initial "state".

Not all about looks, even for PRNGs.

Good PRNGs satisfy specific statistical properties.

Q: Do basic PRNGs also satisfy security related
cryptographic properties?

Q: Do basic PRNGs also satisfy security related
cryptographic properties?

Said in another way…

Q: Do basic PRNGs also satisfy security related
cryptographic properties?

Said in another way…

given an output of the PRNG, are we able to predict
the next number?

Q: Do basic PRNGs also satisfy security related
cryptographic properties?

Said in another way…

given an output of the PRNG, are we able to predict
the next number?

xn ⟶ ?

Q: Do basic PRNGs also satisfy security related
cryptographic properties?

Q: Do basic PRNGs also satisfy security related
cryptographic properties?

Short answer: No.

Q: Do basic PRNGs also satisfy security related
cryptographic properties?

Short answer: No.
Long answer: No, and this is problematic…

Q: Do basic PRNGs also satisfy security related
cryptographic properties?

Short answer: No.
Long answer: No, and this is problematic…

We will see why using PRNGs in certain contexts could
be dangerous.

Now, there are many PRNGs:

Middle-square method (1946)
Linear Congruential Generators (1958)
Linear-feedback shi� register (1965)
…
Mersenne Twister (1998)
xorshi� (2003)
xoroshiro128+ (2018)
squares RNG (2020)

To understand how PRNGs work we will analyze two
specific implementations:

To understand how PRNGs work we will analyze two
specific implementations:

rand(), implemented in C. (today)
#include <stdlib.h>

seed(1337);

printf("%d\n", rand()); // 292616681

To understand how PRNGs work we will analyze two
specific implementations:

rand(), implemented in C. (today)
#include <stdlib.h>

seed(1337);

printf("%d\n", rand()); // 292616681

getrandbits(), implemented in python. (next lecture)
import random

random = random.Random(1337)

print(random.getrandbits(32)) # 2653228291

But first, let us consider a simple example.

A FIRST PRNG: MIDDLE SQUARE
METHOD

Invented by John Von
Neumann around 1949.

It is "weak", but it is a good
starting point to approach

the world of PRNGs.

John Von Neumann

One of the simplest PRNG.

It works as follows:

It works as follows:

a n digit number is given in input as a seed

It works as follows:

a n digit number is given in input as a seed
to produce the next number:

It works as follows:

a n digit number is given in input as a seed
to produce the next number:

square the seed

It works as follows:

a n digit number is given in input as a seed
to produce the next number:

square the seed
add leading zeros to reach a 2n digit number

It works as follows:

a n digit number is given in input as a seed
to produce the next number:

square the seed
add leading zeros to reach a 2n digit number
return the n middle digits

It works as follows:

a n digit number is given in input as a seed
to produce the next number:

square the seed
add leading zeros to reach a 2n digit number
return the n middle digits
the returned number becomes the new seed

For example,

Some sequences with different seeds,

675248

1337

42

⟶

⟶

⟶

959861,

7875,

76,

333139,

156,

77,

981593, …

243, …

92, …

Is it statistically useful?

Not really, as it usually has a short period.

Is it statistically useful?

Not really, as it usually has a short period.

Also, the value of n must be even in order for the
method to work. (can you see why?)

state: total amount of memory that is used internally
by the PRNG to generate the sequence of numbers.

Q: How big is the state for the Middle Square Method?

state: total amount of memory that is used internally
by the PRNG to generate the sequence of numbers.

Q: How big is the state for the Middle Square Method?

A: The memory necessary to store the n digit number,
which is at most…

state: total amount of memory that is used internally
by the PRNG to generate the sequence of numbers.

Q: How big is the state for the Middle Square Method?

A: The memory necessary to store the n digit number,
which is at most…

log2(10n − 1)

Is it cryptographically secure?

Is it cryptographically secure?

no (trivially).

Exercise (optional): implement the Middle Square
Method PRNG using a programming language you

desire.

Prefered options are Python or C.

A SECOND PRNG: LINEAR
CONGRUENTIAL GENERATOR

Consider the code of before

(code/rand_example.c)

#include <stdlib.h>

#include <stdio.h>

int main(void) {

 srand(1337);

 int n = 10;

 for (int i = 0; i < n; i++) {

 printf("%d\n", rand());

 }

 return 0;

}

If we execute it, we get
[leo@ragnar code]$ gcc rand_example.c -o rand_example

[leo@ragnar code]$./rand_example

292616681

1638893262

255706927

995816787

588263094

1540293802

343418821

903681492

898530248

1459533395

How are these numbers generated?

292616681,

995816787,

343418821,

1459533395,

1638893262,

588263094,

903681492,

…

255706927

1540293802

898530248

The libc implementation of rand() has two distinct
behaviors, depending on the value of an internal

variable

buf->rand_type

The libc implementation of rand() has two distinct
behaviors, depending on the value of an internal

variable

buf->rand_type

If it is equal to 0, we have a simple

Linear Congruential Generator

The libc implementation of rand() has two distinct
behaviors, depending on the value of an internal

variable

buf->rand_type

If it is equal to 0, we have a simple

Linear Congruential Generator

Otherwise, we have a more complex

Additive Feedback Generator

By default rand() has the more complex behavior of an
Additive Feedback Generator type of PRNG

srand(1337)

rand()

The LCG behavior has to be manually activated

(code/rand_lcg.c)

#include <stdio.h>

#include <stdlib.h>

int main(void) {

 // initialize LCG

 char state1[8]; // !

 initstate(1337, state1, 0); // !

 setstate(state1); // !

 // use the PRNG

 srand(1337);

 int n = 10;

 for (int i = 0; i < n; i++) {

 printf("%d\n", rand());

 }

 return 0;

}

Q: How did you figure this out?

A: some research, using:

search engines
reading source code
debugging with gdb

Q: How did you figure this out?

A: some research, using:

search engines
reading source code
debugging with gdb

(for those interested, at the end of the lecture I will do
an interactive debugging session).

Let us focus on the first, simpler case.

Linear Congruential Generator

A Linear Congruential Generator is defined by the
following set of equations

where

 are typically fixed
 changes on every restart

{
x0

xn

= seed
= (⋅ a + b) mod cxn−1

a, b, c
seed

The state is initialized with the given , and it is
then updated for generating each subsequent number.

seed

seed = ⟶ ⟶ ⟶ ⟶…⟶x0 x1 x2 x3 xn

Let's look at the LCG implemented in the libc…

LCG IN RAND()'S GLIBC

Initialization in __srandom_r()

(glibc/stdlib/random_r.c:161)

int __srandom_r (unsigned int seed, struct random_data *buf) {

 int type;

 int32_t *state;

 // ...

 state = buf->state;

 // ...

 state[0] = seed;

 if (type == TYPE_0)

 goto done;

 // ...

}

State update in __random_r()

(glibc/stdlib/random_r.c:353)

int __random_r (struct random_data *buf, int32_t *result) {

 // ...

 if (buf->rand_type == TYPE_0) {

 int32_t val = ((state[0] * 1103515245U) + 12345U) & 0x7fffffff;

 state[0] = val;

 *result = val;

 }

 // ...

}

The main equation of the glibc LCG is

= ((× 1103515245) + 12345) & 0x7fffffffxn xn−1

The main equation of the glibc LCG is

xn = ((xn− 1 × 1103515245) + 12345) & 0x7fffffff

where

The main equation of the glibc LCG is

xn = ((xn− 1 × 1103515245) + 12345) & 0x7fffffff

where

0x7fffffff = 2147483647

The main equation of the glibc LCG is

xn = ((xn− 1 × 1103515245) + 12345) & 0x7fffffff

where

0x7fffffff = 2147483647

= 01111111111111111111111111111111
⏟

32 bit

Note that

is equivalent to

(see code/rand_equivalence.c)

x & 2147483647

x mod 2147483648

Remember the concepts of period and state…

The LCG state in C rand() is made up of a single 32
bit integer

Thus it has a period of

(see code/rand_lcg_period.c)

− 1 = 2147483647231

Remember the concepts of period and state…

The LCG state in C rand() is made up of a single 32
bit integer

Thus it has a period of

231 − 1 = 2147483647

(see code/rand_lcg_period.c)

NOTE: why only 231 − 1 and not 232 − 1? Because the
last bit is thrown away (ask the devs).

HOW TO BREAK LCG

Now that we know how a LCG works, we can begin to
understand how to "break" it.

Remember that by "breaking a PRNG" we simply mean

being able to predict what's the next number in the
sequence given some outputs obtained from the

PRNG

, , … ,x1 x2 xn⟶
?

xn+1

Remember the main equation of the LCG

and consider the following attack scenarios:

= (⋅ a + b) mod cxn xn−1

Remember the main equation of the LCG

xn = (xn− 1 ⋅ a + b) mod c

and consider the following attack scenarios:

1. We know all the parameters a, b and c

Remember the main equation of the LCG

xn = (xn− 1 ⋅ a + b) mod c

and consider the following attack scenarios:

1. We know all the parameters a, b and c
2. We know some of the parameters a, b and c

Remember the main equation of the LCG

xn = (xn− 1 ⋅ a + b) mod c

and consider the following attack scenarios:

1. We know all the parameters a, b and c
2. We know some of the parameters a, b and c
3. We don't know any of the parameters a, b and c

Remember the main equation of the LCG

xn = (xn− 1 ⋅ a + b) mod c

and consider the following attack scenarios:

1. We know all the parameters a, b and c
2. We know some of the parameters a, b and c
3. We don't know any of the parameters a, b and c

We'll cover how to deal with scenarios 1 and 3.

SCENARIO : WE KNOW ALL THE PARAMETERS1

Scenario : We know all the parameters and

This scenario is easy.

1 a, b c

Scenario 1: We know all the parameters a, b and c

This scenario is easy.

Why?

Scenario : We know all the parameters and

Let be a sequence of observed outputs
from the PRNG. Then the next output is obtained by

simply using the main LCG equation

1 a, b c

, , … ,x1 x2 xn

= (⋅ a + b) mod cxn+1 xn

For example, assuming

if we get an output the next output will be

a = 1103515245 , b = 12345 , c = 2147483648

= 1337xn

xn+1 = (1337 ⋅ 1103515245 + 12345) mod 21474836

= 78628734

SCENARIO : WE DON'T KNOW ANY OF THE
PARAMETERS

2

Scenario : We don't know the parameters and

This scenario is a bit more involved.

The attack we'll discuss is based on a cool property of
number theory.

2 a, b c

There are also other roads to attack LCGs, following
the research published by George Marsaglia in 1968

Article

https://www.pnas.org/doi/10.1073/pnas.61.1.25

We can sketch the general idea behind the attack:

We can sketch the general idea behind the attack:

We first observe an output sequence x0, x1, …, xn.

We can sketch the general idea behind the attack:

We first observe an output sequence x0, x1, …, xn.
Then we compute the modulus c

We can sketch the general idea behind the attack:

We first observe an output sequence x0, x1, …, xn.
Then we compute the modulus c
Then we compute the multiplier a

We can sketch the general idea behind the attack:

We first observe an output sequence x0, x1, …, xn.
Then we compute the modulus c
Then we compute the multiplier a
Then we compute the increment b

Step 1/3: Computing the modulus c

Computing (1/11)

Let be the observed sequence of
outputs. We define

c

, , … ,x0 x1 xn

tn

un

:= −xn+1 xn

:= | ⋅ − |tn+2 tn t2
n+1

, n = 0, … ,n − 1

, n = 0, … ,n − 3

Computing (2/11)

Then with high probability we have that

where

c

c = gcd(, , , … ,)u1 u2 u3 un−3

gcd⟶ Greatest Common Divisor

Computing (3/11)

Code to compute the modulus

(code/attack_lcg.py)

c

c

def compute_modulus(outputs):

 ts = []

 for i in range(0, len(outputs) - 1):

 ts.append(outputs[i+1] - outputs[i])

 us = []

 for i in range(0, len(ts)-2):

 us.append(abs(ts[i+2]*ts[i] - ts[i+1]**2))

 modulus = reduce(math.gcd, us) #!

 return modulus

Computing (4/11)

Q: Why does that even work?

c

Computing (5/11)

Remember how we defined

c

tn

tn = −xn+1 xn

= (⋅ a + b) − (⋅ a + b) mod cxn xn−1

= ⋅ a − ⋅ a mod cxn xn−1

= (−) ⋅ a mod cxn xn−1

= ⋅ a mod ctn−1

Computing (6/11)

Thus we get

c

= ⋅ mod ctn+2 tn a
2

Computing (7/11)

This means that

c

⋅ −tn+2 tn t2
n+1 = (⋅) ⋅ − (⋅ a mod ctn a

2
tn tn)2

= (⋅ a − (⋅ a mod ctn)2
tn)2

= 0 mod c

Computing (8/11)

Therefore such that

c

∃k ∈ Z

= | ⋅ − | = |k ⋅ c|un tn+2 tn t2
n+1

Computing c (8/11)

Therefore ∃k ∈ Z such that

un = | tn+ 2 ⋅ tn − t2n+ 1 | = | k ⋅ c |

Said in another way

Computing c (8/11)

Therefore ∃k ∈ Z such that

un = | tn+ 2 ⋅ tn − t2n+ 1 | = | k ⋅ c |

Said in another way

un is a multiple of c!

Computing (9/11)

Ok, with this we now know we can compute a bunch of
multiples of starting from a sequence of outputs

c

c

, , … ,x0 x1 xn⟶ , , … ,t0 t1 tn−1

⟶ , , … ,u0 u1 un−3

multiples of c

Computing (10/11)

And here comes the cool number theory fact:

c

Computing c (10/11)

And here comes the cool number theory fact:

The gcd of two random multiples of c will be c with
probability

Computing c (10/11)

And here comes the cool number theory fact:

The gcd of two random multiples of c will be c with
probability

6

π2 ≈ 0.61

Computing (11/11)

By taking the gcd of many random multiples of , there
is a very high probability that such gcd will be exactly

.

The more multiples we have, the higher the
probability!

c

c

c

c = gcd(, , , … ,)u1 u2 u3 un−3

Step 2/3: Computing the multiplier a

Computing (1/3)

Once we have the modulus , we can obtain the
multiplier by observing that

gives us

a

c

a

{
x1

x2

= (⋅ a + b) mod cx0

= (⋅ a + b) mod cx1

− = a ⋅ (−) mod cx1 x2 x0 x1

Computing (2/3)

And from

we get

a

− = a ⋅ (−) mod cx1 x2 x0 x1

a = (−) ⋅ (− mod cx1 x2 x0 x1)−1

Computing (3/3)

Code to compute the multiplier

(code/attack_lcg.py)

a

a

def compute_multiplier(outputs, modulus):

 term_1 = outputs[1] - outputs[2]

 term_2 = pow(outputs[0] - outputs[1], -1, modulus) #!

 a = (term_1 * term_2) % modulus

 return a

Step 3/3: Computing the increment b

Computing (1/2)

Finally, once we know and , we can easily obtain

b

c a b

x1

b

= (⋅ a + b) mod cx0

⟹

= (− ⋅ a) mod cx1 x0

Computing (1/2)

Code to compute the increment

(code/attack_lcg.py)

b

b

def compute_increment(outputs, modulus, a):

 b = (outputs[1] - outputs[0] * a) % modulus

 return b

Putting it all together

(code/attack_lcg.py)

def main():

 prng = LCG(seed=1337, a=1103515245, b=12345, c=2147483648)

 n = 10

 outputs = []

 for i in range(0, n):

 outputs.append(prng.next())

 # -----------------------------

 c = compute_modulus(outputs)

 a = compute_multiplier(outputs, c)

 b = compute_increment(outputs, c, a)

 print(f"c={c}")

 print(f"a={a}")

 print(f"b={b}")

We get
[leo@archlinux code]$ python3 attack_lcg.py
c=2147483648
a=1103515245
b=12345

c = 2147483648 , a = 1103515245 , b = 12345

LIVE DEMO

WAIT A SEC…

Let us implement a custom LCG in C with custom
parameters

a

b

c

= 2147483629

= 2147483587

= 2147483647

Custom LCG implementation (1/3)

(code/custom_lcg.c)

uint32_t a = 2147483629;

uint32_t b = 2147483587;

uint32_t c = 2147483647;

uint32_t state;

uint32_t myrand(void) {

 uint32_t val = ((state * a) + b) % c;

 state = val;

 return val;

}

void mysrand(uint32_t seed) {

 state = seed;

}

Custom LCG implementation (2/3)

(code/custom_lcg.c)

int main(void) {

 mysrand(1337);

 int n = 10;

 for (int i = 0; i < n; i++) {

 printf("%d\n", myrand());

 }

 return 0;

}

Custom LCG implementation (3/3)

By executing it we get
gcc custom_lcg.c -o custom_lcg

[leo@archlinux code]$./custom_lcg
2147458185
483737
2138292585
174630137
976994632
764454763
507744979
1090263579
759828418
595645533

Now if we use attack_lcg.py to extract the parameters
outputs = [2147458185, 483737, 2138292585, 174630137,

 976994632, 764454763, 507744979, 1090263579,

 759828418, 595645533]

c = compute_modulus(outputs)

a = compute_multiplier(outputs, c)

b = compute_increment(outputs, c, a)

print(f"c={c}")

print(f"a={a}")

print(f"b={b}")

We get
[leo@archlinux code]$ python3 attack_lcg.py
c=1
a=0
b=0

We get
[leo@archlinux code]$ python3 attack_lcg.py
c=1
a=0
b=0

Why did it fail?

We get
[leo@archlinux code]$ python3 attack_lcg.py
c=1
a=0
b=0

Why did it fail?

Did we break the math somehow?

The mathematical model on which our attack is based
assumes to be working with the standard LCG formula

{
x0

xn

= seed
= (⋅ a + b) mod cxn−1

The mathematical model on which our attack is based
assumes to be working with the standard LCG formula

x0 = seed

xn = (xn− 1 ⋅ a + b) mod c{
Is this the case when working with C?

The mathematical model on which our attack is based
assumes to be working with the standard LCG formula

x0 = seed

xn = (xn− 1 ⋅ a + b) mod c{
Is this the case when working with C?

Someone said… what, overflows?

In C every datatype has a fixed number of bytes.

uint32_t⟶ 4 bytes

⟶ 01010101101011100011101010111011
32 bits

When all bytes of a given datatype (uint32_t) are
used, an overflow happens.

4294967295

4294967296

⟶ 11111111111111111111111111111111

32 bits

⟶ 00000000000000000000000000000000

Overflows break our model

The correct model when dealing with overflows is the
following one

⎧

⎩
⎨

x0

xn

= seed ∧ 0xFFFFFFFF

= (((⋅ a) ∧ 0xFFFFFFFF + b)xn−1

∧ 0xFFFFFFFF) mod c

When things break down, asses your models.

When things break down, asses your models.

(works in all aspects of life, btw)

SO, NOW WHAT?

We have mentioned that

random numbers are hard to generate!

We have mentioned that

random numbers are hard to generate!
Now we can see why this is the case.

Indeed, we have described two different PRNGs:

Middle Square Method
Linear Congruential Generator

And we learned how to bypass the "randomness" they
produce in order to predict the next number.

So, now what do we do?

Are we doomed to use cryptographically unsafe
generators of pseudo-randomness?

Luckily for us, no!

Luckily for us, no!

(sort of…)

TOWARDS CSPRNG

And here comes a new term:

And here comes a new term:

CSPRNG ⟶ Cryptographically
⟶ Secure
⟶ Pseudo
⟶ Random
⟶ Number
⟶ Generator

A CSPRNG has to satisfy the following two properties:

Next-bit test
State compromise extensions

Next-bit test (1/2)

Given the first bits of a random sequence, there is no
polynomial-time algorithm that can predict the

 th bit with probability of success better than
.

k

(k + 1)
50%

Next-bit test (2/2)

This is to say:

no matter how many outputs I see, I'm not gonna
have a good time trying to predict the next generated

value

, , , … , ⟶ ?x0 x1 x2 xn

State compromise extensions (1/2)

In the event that part or all of its state has been
revealed (or guessed correctly), it should be

impossible to reconstruct the stream of random
numbers prior to the revelation.

State compromise extensions (2/2)

Additionally, if there is an entropy input while running,
it should be infeasible to use knowledge of the input's
state to predict future conditions of the CSPRNG state.

CSPRNG vs PRNG (1/3)

CSPRNG vs PRNG (2/3)

Both generate uniform sequences of numbers

But only CSPRNG are unpredictable to a human mind!

CSPRNG vs PRNG (3/3)

(code/csprng_vs_prng.py)

import random

import secrets

def main():

 figure, axis = plt.subplots(1, 2)

 n = 1000000

 max_int = 100

 csprng_out = [0] * n

 for k in range(0, n):

 csprng_out[k] = secrets.randbelow(max_int)

 prng_out = [0] * n

 for k in range(0, n):

 prng_out[k] = random.randrange(0, max_int)

 axis[0].hist(csprng_out, max_int, rwidth=0.5, color="red")

 axis[0].set_title("CSPRNG")

 axis[1].hist(prng_out, max_int, rwidth=0.5, color="blue")

 axis[1].set_title("PRNG")

 plt.show()

if __name__ == "__main__":

 main()

Now…

there are various ways to access CSPRNGs.

CSPRGNs Implementations (1/4)

In linux you can use the device driver
/dev/urandom

$ head -c 500 /dev/urandom > test.txt

$ ls -lha random_data

-rw-r--r-- 1 leo users 500 6 ott 15.58 random_data

$ hexdump -C random_data

00000000 84 97 11 56 8f 67 4b 1f d4 82 85 27 47 79 1a 8c |...V.gK.

00000010 78 f1 14 1f 23 98 ea e1 84 96 ae be f7 d9 ac 9a |x...#...

00000020 b3 be 3b 41 7a 93 fa 06 d9 86 5b fb bc da 26 3c |..;Az...

CSPRGNs Implementations (2/4)

In python you can use the os.urandom() function

(code/csprng.py)

#!/usr/bin/env python3

import os

def generate_random_digest(bit_size):

 return os.urandom(bit_size).hex()

if __name__ == "__main__":

 print(generate_random_digest(8))

 print(generate_random_digest(16))

 print(generate_random_digest(32))

CSPRGNs Implementations (3/4)

$ python3 csprng.py

8d7d442ef029b7c4

448903bb7f13a2a26414c4b73e0c0014

4e2bd3fb9b70aa38a626aa8262d9dd3acd843e79cdd08efe18221b7b17f833d9

CSPRGNs Implementations (4/4)

You can also use the secrets library

Q: are CSPRGNs always better?

Q: are CSPRGNs always better?

A: No, of course not.

They are more expensive, since entropy is hard to
generate.

Therefore they should only be used for security
reasons.

TO FINISH, A BIG PICTURE

Big picture (1/4)

Through PRNGs we are able use pseudo-randomness
for various purposes.

Big picture (2/4)

Remember however that pseudo-randomness is not
true randomness.

Big picture (3/4)

Before using PRNGs, ask yourself:

Is it a problem if a human mind is able to guess the
next number?

Big picture (4/4)

Q: Is it a problem if a human mind is able to guess the
next number?

If it is, go with CSPRGNs, otherwise stick with classical
PRNGs.

That's it.

Thank you.

