
Capture The Flags
A (somewhat) gentle introduction

LEONARDO TAMIANO

TABLE OF CONTENTS
On Capture The Flags (CTFs)
The Black-Box Technique

Example of Black Boxing
Interfaces and Implementations

Python Review
Out First Challenges

Caesar Cipher
One-Time Pad

Your Turn
Many-Times Pad
LCG Lottery

ON CAPTURE THE FLAGS (CTFS)

Capture The Flags are offline/online events that focus
on computer security related topics.

The idea is to have a series of challenges, and the goal
of each challenge is to capture a flag.

Flag{Crypt0IsH4rd}

The flag is protected by various mechanism, and to get
it one has to find, research and exploit one or more

vulnerabilities.

Each challenge belongs within a specific category.

binary
reverse
web
crypto
mobile
OSINT

Learning through CTFs can be fun and instructive.

University ⇔ CTFs ⇔ Real-World

THE BLACK-BOX TECHNIQUE

Computer Science is complex.

Computer Science is complex.

Applied cryptography is very complex.

Computer Science is complex.

Applied cryptography is very complex.

Q: How do you deal with such overwhelming
complexity?

Q: How do you deal with such overwhelming
complexity?

Helpful idea:

being able to think in terms of

black boxes

Q: What is a black box?

Q: What is a black box?

A: It is anything that takes an input and produces an
output.

Thinking in terms of black boxes allows us to

ignore implementation details!

When using black boxes we're only interested in the
mapping

Input⟶ Output

When using black boxes we're only interested in the
mapping

Input⟶ Output

This can remove a lot of complexity.

When using black boxes we're only interested in the
mapping

Input⟶ Output

This can remove a lot of complexity.

(but be careful cause you're gonna miss some details)

EXAMPLE OF BLACK BOXING

Example of Black Boxing (1/4)

Consider the following code

(code/black-box.py)

def fun(arr, n):

 gap = n // 2

 while gap > 0:

 for i in range(gap, n):

 temp = arr[i]

 j = i

 while (j >= gap and arr[j - gap] > temp):

 arr[j] = arr[j - gap]

 j -= gap

 arr[j] = temp

 gap //= 2

Example of Black Boxing (2/4)

We can analyze the previous code in various ways.

Example of Black Boxing (2/4)

We can analyze the previous code in various ways.

If we "black box it" we're only interested in the
mapping between input and output.

Example of Black Boxing (2/4)

We can analyze the previous code in various ways.

If we "black box it" we're only interested in the
mapping between input and output.
If we "white box it" we're also interested about its
implementation details.

Example of Black Boxing (2/4)

We can test the code as follows
def main():

 arr = [3, 5, 2, 1, 0, 2, 3, 1]

 n = len(arr)

 print(arr)

 fun(arr, n)

 print(arr)

Example of Black Boxing (3/4)

Executing it, we get
$ python3 black-box.py
Before function call
[3, 5, 2, 1, 0, 2, 3, 1]
After function call
[0, 1, 1, 2, 2, 3, 3, 5]

Example of Black Boxing (3/4)

Executing it, we get
$ python3 black-box.py
Before function call
[3, 5, 2, 1, 0, 2, 3, 1]
After function call
[0, 1, 1, 2, 2, 3, 3, 5]

What does the code do?

Example of Black Boxing (3/4)

Executing it, we get
$ python3 black-box.py
Before function call
[3, 5, 2, 1, 0, 2, 3, 1]
After function call
[0, 1, 1, 2, 2, 3, 3, 5]

What does the code do?

It sorts an array of integers (shell-sort)!

INTERFACES AND IMPLEMENTATIONS

When analyzing real so�ware implementations, it is
impossible to understand all the details.

When analyzing real so�ware implementations, it is
impossible to understand all the details.

Thinking in terms of black boxes therefore becomes a
necessity.

Of course, a black box is simply an abstraction.

A model to help us not go crazy.

A black box is simply an abstraction.

Thus, it is always important to be extremely aware of
what exactly is that we are "black boxing" at any given

moment.

I suggest to always keep a mental boundary between

Interface Knowledge (black box)
Implementation Knowledge (white box)

I suggest to always keep a mental boundary between

Interface Knowledge (black box)
Implementation Knowledge (white box)

I also suggest to try to implement things yourself, so
as to develop more implementation knowledge.

Implementation

(white box)

Interface

(black box)

def fun(arr, n):

 gap = n // 2

 while gap > 0:

 for i in range(gap, n):

 temp = arr[i]

 j = i

 while (j >= gap and arr[j - gap] > temp):

 arr[j] = arr[j - gap]

 j -= gap

 arr[j] = temp

 gap //= 2

arr = { ,x0

fun(

arr = { ,xi0

≤ij ik

, , … , }x1 x2 xn

↓
arr, n)

↓
, , … , }xi1 xi2 xin

⟹ ≤xij
xik

Confuse interfaces with
implementations and

sooner or later you will be
in much trouble (imho)

The dualism

applies to all sorts of technologies.

Interface Knowledge

↕

Implementation Knowledge

Even cars…

Implementation

(white box)

Interface

(black box)

I suspect it is an intrinsic property of technology.

Of the two, I believe implementation knowledge is
much rarer, and, therefore, potentially more valuable.

PYTHON REVIEW

CTFs involve a diverse and heterogeneous set of
technologies.

We will restrict your focus on python.

Q: What is Python?

Python is an interpreted
programming language

that can be used in many
different contexts

Data science
Cybersecurity
Web development
DevOps

Q: What is Python?

Q: Interpreted?

There exists a program, the interpreter, which takes in
input python code and which executes each line of the

code to produce an effect.

Python code⟶ Python Interpreter⟶ Effect

We write code to change bits

010101010111010101110101010101

101010101000101010001010101010

There are various online tutorials on how to install
python in your environment.

https://www.python.org/downloads/

https://www.python.org/downloads/

Basic structure of a python program

(code/python-review/hello.py)

#!/usr/bin/env python

def main():

 print("Hello World!")

if __name__ == "__main__":

 main()

Basic structure of a python program

(code/python-review/hello.py)

#!/usr/bin/env python

def main():

 print("Hello World!")

if __name__ == "__main__":

 main()

NOTE: The code is executed from top to bottom.

$ python3 hello.py

Hello World!

I suggest you to (briefly) review the following basic
programming construct:

variables
functions
conditionals
iteration
basic data structures
classes

I suggest you to (briefly) review the following basic
programming construct:

variables
functions
conditionals
iteration
basic data structures
classes

NOTE: No need to be an expert

Variables in Python

(code/python-review/variables.py)

#!/usr/bin/env python

if __name__ == "__main__":

 boolean = True

 integer = 10

 floating = 10.5

 string = "Hello"

Functions in Python

(code/python-review/functions.py)

#!/usr/bin/env python

def my_sum(a, b):

 return a + b

if __name__ == "__main__":

 result = my_sum(3, 5)

 print(result)

Conditionals in Python

(code/python-review/conditionals.py)

#!/usr/bin/env python

def absolute_value(a):

 if a > 0:

 return a

 else:

 return -a

if __name__ == "__main__":

 print(absolute_value(-10))

 print(absolute_value(10))

Iterations in Python

(code/python-review/iterations.py)

#!/usr/bin/env python

def check_prime(n):

 for i in range(0, n):

 if n % i == 0:

 return False

 return True

if __name__ == "__main__":

 print(check_prime(7))

 print(check_prime(10))

Basic data structures in Python

(code/python-review/data-structures.py)

#!/usr/bin/env python

if __name__ == "__main__":

 my_list = [10, 13, 3, 0, 6]

 first_element = my_list[0]

 last_element = my_list[4]

 length = len(my_list)

 my_dictionary = {"a": 0, "b": 0, "c": 0}

 value = my_dictionary["a"]

 my_dictionary["d"] = 0

 my_tuple = (10, 20)

 elem = my_tuple[0]

Classes in Python

(code/python-review/classes.py)

#!/usr/bin/env python

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def set_age(self, age):

 self.age = age

 def get_age(self):

 return self.age

if __name__ == "__main__":

 p1 = Person("Leonardo", 27)

 p2 = Person("Giuseppe", 22)

 print(p1.get_age())

OUT FIRST CHALLENGES

Let's start by analyzing some challenges together.

CAESAR CIPHER

The idea of a Caesar Cipher is to hide the meaning of a
message by shi�ing each letter of the alphabet by a

specific constant .c = 3

Shi� when

For a single letter

c = 3

A⟶ A + 3 = D

Shi� when

For the entire alphabet

c = 3

ABCDEFGHIJKLMNOPQRSTUVWXYZ

↓

DEFGHIJKLMNOPQRSTUVWXYZABC

Applying Caesar Cipher

HELLO WORLD
↓

KHOOR ZRUOG

The Challenge (1/2)

We are given a file chal.txt with the following
content

and we need to recover the flag
BHWC{ODEBPEJC_EO_JKP_AJKQCD!}

FLAG{...}

The Challenge (2/2)

We're also given the code that wasa used to generate
chal.txt

def main():

 shift_value = random.randint(0, 25)

 c = Caesar(shift=shift_value)

 with open("chal.txt", "w") as f:

 encrypted_flag = c.encrypt(FLAG)

 f.write(encrypted_flag)

How would you solve it?

How would you solve it?

Hint: KNOWN-PLAINTEXT ATTACK

KNOWN-PLAINTEXT ATTACK

The plaintext flag starts with . We can use this fact to
compute the shi� used.

Where is the first letter of the ciphertext

F

shift = ASCII() − ASCII(F) mod 26c1

c1

In our case

shift = ASCII() − ASCII(F) mod 26c1

= ASCII(B) − ASCII(F) mod 26

= 66 − 70 mod 26
= −4 mod 26
= 22

Implemented in code
#!/usr/bin/env python3

from caesar import Caesar

def solve():

 flag = open("./chal.txt", "r").read()

 # extract shift_value with a KNOWN PLAINTEXT ATTACK

 shift_value = (ord(flag[0]) - ord('F')) % 26

 # decipher the rest

 c = Caesar(shift=shift_value)

 decrypted_flag = c.decrypt(flag)

 print(decrypted_flag)

if __name__ == "__main__":

 solve()

$ python3 solution.py
FLAG{SHIFTING_IS_NOT_ENOUGH!}

ONE-TIME PAD

This challenge starts with the following text

Who needs AES when you have XOR?

The challenge is made up of two files

A challenge.py python script

An output.txt file with the following content

(code/one-time-pad)

Flag: 134af6e1297bc4a96f6a87fe046684e8047084ee046d84c5282dd7ef292dc9

The python script contains the following code

(code/one-time-pad/challenge.py)

#!/usr/bin/python3

import os

flag = open('flag.txt', 'r').read().strip().encode()

class XOR:

 def __init__(self):

 self.key = os.urandom(4)

 def encrypt(self, data):

 xored = b''

 for i in range(len(data)):

 xored += bytes([data[i] ^ self.key[i % len(self.key)]])

 return xored

 def decrypt(self, data):

 return self.encrypt(data)

def main():

 global flag

 crypto = XOR()

 print ('Flag:', crypto.encrypt(flag).hex())

if __name__ == '__main__':

 main()

We can infer that the output.txt file was encrypted
using the XOR class defined in challenge.py.

In particular, the code implements a one-time-pad.

The idea behind the one-time-pad is to compute the
encrypted text by using the XOR operation between

the original message bytes and a random key.

Plaintext ⊕ Random key⟶ Encrypted text

To work properly, the scheme requires that:

1. The key must be generated using cryptographically
secure pseudo-random bytes.

2. The key must be as long as the message.
3. For each message, a new key must be generated.

Is this the case?

(code/one-time-pad/challenge.py)

class XOR:

 def __init__(self):

 self.key = os.urandom(4)

 def encrypt(self, data):

 xored = b''

 for i in range(len(data)):

 xored += bytes([data[i] ^ self.key[i % len(self.key)]])

 return xored

 def decrypt(self, data):

 return self.encrypt(data)

The initialization of the key is done using
os.urandom(), which provides with cryptography

safe random bytes.

(code/one-time-pad/challenge.py)

def __init__(self):

 self.key = os.urandom(4)

Decryption is the same as encryption

(code/one-time-pad/challenge.py)

def decrypt(self, data):

 return self.encrypt(data)

Finally, encryption is done by xoring the byte of the
message with the byte of the key

(code/one-time-pad/challenge.py)

def encrypt(self, data):

 xored = b''

 for i in range(len(data)):

 xored += bytes([data[i] ^ self.key[i % len(self.key)]])

 return xored

What happens when

?

 len(data) > len(self.key)

At some point the bytes of the keys are re-used again,
even though this shouldn't be possible.

This vulnerability breaks the implementation.

 len(data) > len(self.key)

Indeed, we can extract all key bytes by doing, once
again, a KNOWN-PLAINTEXT ATTACK

NOTE: This is enough to break the entire ciphertext.

K0

K1

K2

K3

= ⊕ ASCII(F)C0

= ⊕ ASCII(L)C1

= ⊕ ASCII(A)C2

= ⊕ ASCII(G)C3

Solution

(code/one-time-pad/solution.py)

#!/usr/bin/env python3

def solve():

 with open("./output.txt", "r") as f:

 output = f.read()

 flag = output.split("Flag: ")[1]

 encrypted_bytes = bytes.fromhex(flag)

 # extract key bytes

 key = [0, 0, 0, 0]

 key[0] = encrypted_bytes[0] ^ ord('F')

 key[1] = encrypted_bytes[1] ^ ord('L')

 key[2] = encrypted_bytes[2] ^ ord('A')

 key[3] = encrypted_bytes[3] ^ ord('G')

 # decrypt flag

 plaintext = ["A"] * len(encrypted_bytes)

 for i in range(0, len(encrypted_bytes)):

 plaintext[i] = chr(encrypted_bytes[i] ^ key[i % 4])

 plaintext = "".join(plaintext)

 print(plaintext)

YOUR TURN

MANY-TIMES PAD
They told me to use it one time.

But really, what's the issue here if I use it more than once?

Many-Times pad

FILES:

IP: 204.216.217.175
PORT: 4321

https://teaching.leonardotamiano.xyz/university/2023
2024/cns/02/many-times-pad.zip

https://teaching.leonardotamiano.xyz/university/2023-2024/cns/02/many-times-pad.zip
https://teaching.leonardotamiano.xyz/university/2023-2024/cns/02/many-times-pad.zip

We can explore the challenge with nc
$ nc 204.216.217.175 4321
Welcome to Many-times pad.

Make a choice:
 [1] Show flag
 [2] Encrypt

With option 1 we receive a base64 encoded falg

If we decode it however we see unrecognizable bytes
Flag: 75SMMJiMn3fLPCFP+ubDEAwL1cXgYF7s8XN4Stqg

$ echo "75SMMJiMn3fLPCFP+ubDEAwL1cXgYF7s8XN4Stqg" | base64 -d | hexdump

ef 94 8c 30 98 8c 9f 77 cb 3c 21 4f fa e6 c3 10 |...0...w.<!O....|
0c 0b d5 c5 e0 60 5e ec f1 73 78 4a da a0 |.....`^..sxJ.. |

With option 1 we receive a base64 encoded falg

If we decode it however we see unrecognizable bytes
Flag: 75SMMJiMn3fLPCFP+ubDEAwL1cXgYF7s8XN4Stqg

$ echo "75SMMJiMn3fLPCFP+ubDEAwL1cXgYF7s8XN4Stqg" | base64 -d | hexdump

ef 94 8c 30 98 8c 9f 77 cb 3c 21 4f fa e6 c3 10 |...0...w.<!O....|
0c 0b d5 c5 e0 60 5e ec f1 73 78 4a da a0 |.....`^..sxJ.. |

NOTE: This means the flag is encrypted!

With option 2 we can send an arbitrary input

However that input has to be base64 encoded before,
otherwise we get an error message

Send data to encrypt:
HELLOWORLD

[ERROR]: Could not understand data: make sure to base64 your payload!

With proper base64 input instead we get a response
back

This seems to be the relative encrypted version of our
payload.

Send data to encrypt:
SEVMTE9XT1JMRAo=
Encrypted: g9SGPimPgvOcRIk=

We can now analyze the source code of the server,
server.py

Python Client (1/5)

Finally, we develop the following client application to
interact with the server in the file client.py

(code/many-times-pad/client.py)

#!/usr/bin/env python3

import socket

from base64 import b64decode

from base64 import b64encode

REMOTE_IP = "204.216.217.175"

REMOTE_PORT = 4321

Python Client (2/5)

(code/many-times-pad/client.py)

def solve():

 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:

 sock.connect((REMOTE_IP, REMOTE_PORT))

 # ignore initial response

 sock.recv(len(b'Welcome to Many-times pad.\n\n'))

Python Client (3/5)

Get flag

(code/many-times-pad/client.py)

 try:

 sock.recv(len(b'Make a choice:\n [1] Show flag\n [2] Encrypt\n\n'))

 sock.send(b'1')

 s = sock.recv(1024).decode("utf-8")

 b64_flag = s.split("Flag: ")[1]

 flag_bytes = b64decode(b64_flag)

 print(f"Flag_encrypted_bytes = {list(flag_bytes)}")

 except Exception as e:

 print("Could not read flag")

 exit()

Python Client (4/5)

Send text to encrypt

(code/many-times-pad/client.py)

 plaintext = b"HELLO"

 try:

 sock.recv(len(b'Make a choice:\n [1] Show flag\n [2] Encrypt\n\n'))

 sock.send(b'2')

 sock.recv(len(b'Send data to encrypt:\n'))

 print(f"Sending plaintext: {list(plaintext)}")

 sock.send(b64encode(plaintext))

 s = sock.recv(1024).decode("utf-8")

 encrypted_bytes_b64 = s.split("Encrypted: ")[1]

 encrypted_bytes = b64decode(encrypted_bytes_b64)

 print(f"Received Encrypted: {list(encrypted_bytes)}")

 except Exception as e:

 print("Could not send plaintext")

 exit()

Python Client (5/5)

(code/many-times-pad/client.py)

if __name__ == "__main__":

 solve()

When executing the client we get
$ python3 client.py
Flag_encrypted_bytes = [81, 113, 165, 138, 136, 158, ...]
Sending plaintext: [72, 69, 76, 76, 79]
Received Encrypted: [91, 7, 196, 133, 243]

Now its your turn.

Modify the client code, and get the flag!

LCG LOTTERY
Can you predict the unpredictable?

LCG Lottery

FILES:

IP: 204.216.217.175
PORT: 4444

https://teaching.leonardotamiano.xyz/university/2023
2024/cns/02/lcg-lottery.zip

https://teaching.leonardotamiano.xyz/university/2023-2024/cns/02/lcg-lottery.zip
https://teaching.leonardotamiano.xyz/university/2023-2024/cns/02/lcg-lottery.zip

We can explore the challenge with nc
$ nc 204.216.217.175 4444
Welcome to LCG-Lottery.

Make a choice:
 [1] Draw
 [2] Guess

With option 1 we receive a number encoded in base64

We can decode it as follows
OTY5Nzk2MDMy

$ echo -e "OTY5Nzk2MDMy" | base64 -d
969796032

With option 2 we can send a number to the server, but
we must encode it in base64

NzYyNzY3NjA3
Wrong!

If we analyze the code of the challenge, we see that the
server initializes a PRNG with secret parameters

def challenge(req):

 global FLAG, A, B, C

 seed = int.from_bytes(os.urandom(32))

 prng = LCG(seed, A, B, C)

 guessed = 0

The numbers we receive are numbers obtained
directly from the PRNG

if opt == "1":

 number = prng.next()

 data_out = wrap(str(number).encode("utf-8")) + b'\n'

 req.sendall(data_out)

To actually read the flag, we need to guess correctly
numbers in a row.

3

elif opt == "2":

 data_in = req.recv(4096).decode().strip()

 try:

 guess = unwrap(data_in)

 if int(guess) == prng.next():

 guessed += 1

 if guessed > 3:

 data_out = b'Thats it: ' + FLAG + b'\n'

 else:

 data_out = b'Keep going!\n'

 else:

 data_out = b'Wrong!\n'

 guessed = 0

 req.sendall(data_out)

The PRNG used is the Linear Congruential Generator
(LCG)

class LCG(object):

 def __init__(self, seed, a, b, c):

 self.x = seed % c

 self.a = a

 self.b = b

 self.c = c

 def next(self):

 self.x = (self.x * self.a + self.b) % self.c

 return self.x

Now its your turn.

Write the code, and get the flag!

