
On Padding Oracles
The CBC-PKCS#7 Case

TABLE OF CONTENTS
0x01 – The Challenge
0x02 – The Knowledge
0x03 – The Attack
0x04 – The Code
0x05 – Your Turn!

0X01 – THE CHALLENGE

We will learn about CBC-PKCS#7 padding oracles
through a challenge called

Yet Another Oracle

Yet Another Oracle

Challenge Overview (1/8)

The challenge is made up of a single python script,
server.py, which implements a basic TCP server

written in python.

Challenge Overview (2/8)

The challenge is started server-side
$ python3 server.py
[INFO] - Start of challenge: Yet Another Oracle
[INFO] - Listening on 4444...

Challenge Overview (3/8)

As soon as we connect we see the following
$ nc localhost 4444
Hi, I've been told to show you this.
====================================

ENCRYPTED_FLAG WITH CBC-AES:
 /s0/br/6DThDlXDzViyNwrcX0XbJihAV2a5ikLfp6r5mpNCGKe9lYtlVzuIfTLtz

>

Challenge Overview (4/8)

We can interact with the challenge by sending an
arbitrary amount of bytes, and the server replies with

either NOPE or OK!.
$ nc localhost 4444
Hi, I've been told to show you this.
====================================

ENCRYPTED_FLAG WITH CBC-AES:
 /s0/br/6DThDlXDzViyNwrcX0XbJihAV2a5ikLfp6r5mpNCGKe9lYtlVzuIfTLtz

> test
NOPE
> /s0/br/6DThDlXDzViyNwrcX0XbJihAV2a5ikLfp6r5mpNCGKe9lYtlVzuIfTLtz
OK!

Challenge Overview (5/8)

In terms of code, we have the following
def challenge_3_main():

 global CHALLENGE_NAME, PORT, IV, KEY, CIPHER, ENCRYPTED_FLAG

 IV = get_random_bytes(AES.block_size)

 KEY = get_random_bytes(AES.block_size)

 CIPHER = AES.new(KEY, AES.MODE_CBC, IV)

 data_to_encrypt = b"A" * 16 + FLAG

 ENCRYPTED_FLAG = b64encode(CIPHER.encrypt(pad(data_to_encrypt, AES.block_size)))

 print(f"[INFO] - Start of challenge: {CHALLENGE_NAME}")

 print(f"[INFO] - Listening on {PORT}...")

 socketserver.TCPServer.allow_reuse_address = True

 server = ReusableTCPServer(("0.0.0.0", PORT), incoming)

 server.serve_forever()

Challenge Overview (6/8)

When a client connects to the server the challenge
function is executed

def challenge(req):

 global IV, KEY, CIPHER, ENCRYPTED_FLAG

 req.sendall(b'Hi, I\'ve been told to show you this.\n' +\

 b'====================================\n\n' +\

 b'ENCRYPTED_FLAG WITH CBC-AES: ' +\

 ENCRYPTED_FLAG + b'\n\n> ')

 time.sleep(0.2)

 while True:

 try:

 client_payload = req.recv(4096)

 if len(client_payload) > 0:

 oracle_output = oracle(client_payload)

 if oracle_output == True:

 req.sendall(b'OK!\n> ')

 else:

 req.sendall(b'NOPE\n> ')

 except Exception as e:

 print(e)

 exit()

Challenge Overview (7/8)

The oracle function checks for PKCS#7 conformity
def oracle(payload):

 global IV, KEY, CIPHER

 try:

 payload = b64decode(payload)

 CIPHER = AES.new(KEY, AES.MODE_CBC, IV)

 decrypted_payload = CIPHER.decrypt(payload)

 unpadded_payload = unpad(decrypted_payload, AES.block_size)

 return True

 except ValueError as e:

 return False

Challenge Overview (8/8)

The objective of the challenge is to

decrypt the message without using directly
the server's private key

0X02 – THE KNOWLEDGE

The code of the challenge is vulnerable to a

CBC-PKCS#7 padding oracle attack

Q: What is a padding oracle attack?

Q: What is a padding oracle attack?

A: To understand This vulnerability we need to review
the following concepts

Block ciphers in CBC mode
PKCS #7 padding
MAC-then-ENCRYPT
Cryptographic Oracles

Let's understand in detail each part.

AES-CBC

AES-CBC (1/7)

An example of block cipher is AES, which has a block
size of 128 bits.

01…101

⏟
plaintext (128 bits)

⟶ AES⟶ 11…001

⏟
ciphertext (128 bits)

AES-CBC (2/7)

In CBC mode, each block of plaintext is XORed with the
previous ciphertext block before being encrypted.

Cipher Block Chaining (CBC) mode encryption

block cipher

encryption
Key

Ciphertext

Plaintext

block cipher

encryption
Key

Ciphertext

Plaintext

block cipher

encryption
Key

Ciphertext

Plaintext

Initialization Vector (IV)

AES-CBC (3/7)

AES-CBC encryption formula

C1 = AES-ENC(k, IV ⊕ P1)

C2 = AES-ENC(k, C1 ⊕ P2)

⋮

Cn = AES-ENC(k, Cn− 1 ⊕ Pn)

AES-CBC (4/7)

In terms of decryption we have

AES-CBC (5/7)

AES-CBC decryption formula

P1 = IV ⊕ AES-DEC(k, C1)

P2 = C1 ⊕ AES-DEC(k, C2)

⋮

Pn = Cn− 1 ⊕ AES-DEC(k, Cn)

AES-CBC (6/7)

When using AES in CBC mode we introduce an
Initialization Vector (IV), which must be carefully

handled.

AES-CBC (6/7)

When using AES in CBC mode we introduce an
Initialization Vector (IV), which must be carefully

handled.

NOTE: Predictable IVs could lead to a different
vulnerability, which is attacked through the famous

BEAST attack!

AES-CBC (7/7)

Given that AES is a block cipher, it only works on
blocks of 128 bits.

What happens if our plaintext does not evenly divide
into 128?

AES-CBC (7/7)

Given that AES is a block cipher, it only works on
blocks of 128 bits.

What happens if our plaintext does not evenly divide
into 128?

Basic idea: padding.

PKCS #7 PADDING

PKCS #7 padding (1/3)

Described in RFC 5652, PKCS #7 works as follows:

The value of each added byte is the number of bytes
that are added

PKCS #7 padding (2/3)

With block size = 8 byte = 64 bit

0x A2 CD⟶ 0x A2 CD

6 padding bytes
⏞

06 06 06 06 06 06

0x A2 CD 03 4D⟶ 0x A2 CD 03 4D

4 padding bytes
⏞

04 04 04 04

0x A2 CD 03 4D 5F FF⟶ 0x A2 CD 03 4D 5F FF

2 padding bytes
⏞

02 02

PKCS #7 padding (3/3)

With block size = 16 byte = 128 bit

0x A2 CD 03 4D 5F

↓

0x A2 CD 03 4D 5F 0B 0B 0B 0B 0B 0B 0B 0B 0B 0B 0B

⏟
11 padding bytes

MAC-THEN-ENCRYPT

MAC-Then-Encrypt (1/7)

By default, TLS implements a MAC-Then-Encrypt
scheme for securing the integrity and confidentiality

of a session.

MAC-Then-Encrypt (2/7)

When TLS is used with a block cipher such as AES-
CBC, it works as follows:

1. MAC is computed on:
Internal sequence number (replay attacks)
TLS header
TLS record data

2. Padding is added.
3. Block encryption.

MAC-Then-Encrypt (3/7)

The problem with this construction is that the MAC is
computed before the padding is added, which

means…

Integrity does not cover the padding!

MAC-Then-Encrypt (4/7)

In turns, this means that

an attacker can change the padding a valid TLS
message

meanwhile

the server will not be able to recognize that such
change has taken place.

MAC-Then-Encrypt (5/7)

Q: Is this a security problem?

MAC-Then-Encrypt (5/7)

Q: Is this a security problem?

A: Yes.

MAC-Then-Encrypt (6/7)

More specifically, if the attacker is also able to obtain a
PKCS #7 oracle on the server, then the attacker can

perform a CBC padding oracle attack in order to

decrypt and encrypt arbitrary data using the
server's key

MAC-Then-Encrypt (7/7)

Technically, we don't steal the key from the server.

We just force the server to use it indirectly.

CRYPTOGRAPHIC ORACLES

Let us suppose we are supplied
with some unspecified means of

solving number-theoretic
problems; a kind of oracle as it

were. We shall not go any
further into the nature of the

oracle apart from saying it
cannot be a machine.

Cryptography Oracles (1/6)

As stated by Alan Turing in 1938 in his PhD

Cryptography Oracles (2/6)

We can visualize an oracle as a black box that answers
specific questions.

Question⟶ Oracle⟶ Answer

Cryptography Oracles (2/6)

We can visualize an oracle as a black box that answers
specific questions.

Question⟶ Oracle⟶ Answer

Different types of oracles might answer for different
questions.

Cryptography Oracles (3/6)

For example,

Let g (e ,N) be a function that takes in input a
ciphertext c encrypted with the key (e, N) and outputs

0 if the relative plainext m is even, or 1 if its odd.

Where

c = me mod N

Cryptography Oracles (4/6)

The code of our challenge offers a PKCS#7 oracle:

Cryptography Oracles (4/6)

The code of our challenge offers a PKCS#7 oracle:

If the message we send, once decrypted, respects
the rules of the PKCS#7 padding, we get OK!

Cryptography Oracles (4/6)

The code of our challenge offers a PKCS#7 oracle:

If the message we send, once decrypted, respects
the rules of the PKCS#7 padding, we get OK!

Otherwise, we get NOPE.

Cryptography Oracles (4/6)

Let C be the ciphertext of the plaintext P. We can
formalize the oracle of the challenge as follows

O(C) =
1 , P is correctly padded according to PKCS#7
0 , otherwise{

Cryptography Oracles (5/6)

Code that implements the PKCS#7 oracle
 while True:

 try:

 client_payload = req.recv(4096)

 if len(client_payload) > 0:

 oracle_output = oracle(client_payload)

 if oracle_output == True:

 req.sendall(b'OK!\n> ')

 else:

 req.sendall(b'NOPE\n> ')

 except Exception as e:

 print(e)

 exit()

Cryptography Oracles (6/6)

Code that implements the PKCS#7 oracle
def oracle(payload):

 try:

 payload = b64decode(payload)

 CIPHER = AES.new(KEY, AES.MODE_CBC, IV)

 decrypted_payload = CIPHER.decrypt(payload)

 unpadded_payload = unpad(decrypted_payload, AES.block_size)

 return True

 except ValueError as e:

 return False

We are now ready to describe the attack.

Remember all the requirements

Server using block cipher, CBC mode, PKCS#7
padding
Attacker able to change the padding of the message.
Server exposes a PKCS#7 padding oracle.

0X03 – THE ATTACK

Before describing the attack lets introduce some
useful notation.

Useful notation (1/3)

P1, P2, …, Pm, to denote plaintext blocks.
C1, C2, …, Cm., to denote ciphertext blocks.

Where m represents the total number of blocks.

Useful notation (2/3)

We use Pji and Cj
i to denote specific bytes within the

various blocks as follows

Pji := j-th byte of the i-th plaintext block

Cj
i := j-th byte of the i-th ciphertext block

Useful notation (2/3)

Let n denote the byte length of the block cipher in use.

P1 :=P1
1 , P2

1 , … , Pn1
↓

C1 :=C1
1 , C2

1 , … , Cn
1

For AES-128 we have n = 16.

Let C1, C2, C3, … be the various ciphertext blocks, and
let IV be the initialization vector used to bootstrap

the AES-CBC construction.

AES-CBC encryption

C1 = AES-ENC(k, IV ⊕ P1)

C2 = AES-ENC(k, C1 ⊕ P2)

⋮

Cn = AES-ENC(k, Cn− 1 ⊕ Pn)

AES-CBC decryption

P1 = IV ⊕ AES-DEC(k, C1)

P2 = C1 ⊕ AES-DEC(k, C2)

⋮

Pn = Cn− 1 ⊕ AES-DEC(k, Cn)

Remember the core AES-CBC equations…

We will now describe how an attacker is able to
decrypt the second ciphertext block C2.

What we have: IV , C1 , C2
What we need: P2

Consider only the first two blocks and the IV

C := IV , C1 , C2

We will find the last byte of P2 using the oracle
exposed by the server in a process of trial and error.

Is the last byte of P2 equal to 0x00?
Is the last byte of P2 equal to 0x01?
…
Is the last byte of P2 equal to 0xFF?

Consider then the following question

Q: Is the last byte of P2 equal to 0x41?

Consider then the following question

Q: Is the last byte of P2 equal to 0x41?

(0x41 = A, using ascii encoding)

Using our notation, we can write

Pn2 = 0x41 ?

PN2 = 0X41 ?

Idea: start from C1 and constructĈ1

C1 :=C1
1 , C2

1 , C3
1 , … , Cn− 1

1 , Cn
1

↓

Ĉ1 :=C1
1 , C2

1 , C3
1 , … , Cn− 1

1 , Cn
1 ⊕ 0x41 ⊕ 0x01

⏟
byte changed

Idea: start from C1 and constructĈ1

C1 :=C1
1 , C2

1 , C3
1 , … , Cn− 1

1 , Cn
1

↓

Ĉ1 :=C1
1 , C2

1 , C3
1 , … , Cn− 1

1 , Cn
1 ⊕ 0x41 ⊕ 0x01

⏟
byte changed

NOTE: Careful on those magic values 0x41 , 0x01.

We then use Ĉ1 to construct a new ciphertext

C = IV , C1 , C2 (old ciphertext)

↓

Ĉ = IV , Ĉ1 , C2 (new ciphertext)

We then send the new ciphertext Ĉ to the oracle
exposed by the server.

Two cases to analyze, depending on the oracle answer:

O(Ĉ) = 1
O(Ĉ) = 0

Case I: O(Ĉ) = 1

Suppose that the plaintext P̂ associated with the
ciphertext Ĉ is correctly padded according to PKCS#7.

Case I: O(Ĉ) = 1

Suppose that the plaintext P̂ associated with the
ciphertext Ĉ is correctly padded according to PKCS#7.

What can we infer?

Case I: O(Ĉ) = 1

By definition, during AES decryption the last byte of P̂
is obtained by XORing together the last byte of Ĉ1,

which is the byte modified by the attacker, and the last
byte obtained by applying the decryption procedure to

C2.

Case I: O(Ĉ) = 1

Case I: O(Ĉ) = 1

In formula,

P̂
n
2 = Ĉ

n
1 ⊕ AES-DEC(K, C2)n

= Cn
1 ⊕ 0x41 ⊕ 0x01 ⊕ AES-DEC(K, C2)n

= Cn
1 ⊕ AES-DEC(K, C2)n ⊕ 0x41 ⊕ 0x01

= Pn2 ⊕ 0x41 ⊕ 0x01

()
()

Case I: O(Ĉ) = 1

For P̂ to be correctly padded we can have different
scenarios

1. P̂
n
2 = 0x01 ⟹ (Pn2 = 0x41)

2. P̂
n
2 = 0x02 ⟹ (Pn2 = 0x42 ∧ Pn− 1

2 = 0x02)
3. P̂

n
2 = 0x03 ⟹ (Pn2 = 0x43 ∧ Pn− 1

2 = 0x03 ∧ Pn− 2
2 = 0x03)

4. …

Case I: O(Ĉ) = 1

For P̂ to be correctly padded we can have different
scenarios

1. P̂
n
2 = 0x01 ⟹ (Pn2 = 0x41)

2. P̂
n
2 = 0x02 ⟹ (Pn2 = 0x42 ∧ Pn− 1

2 = 0x02)
3. P̂

n
2 = 0x03 ⟹ (Pn2 = 0x43 ∧ Pn− 1

2 = 0x03 ∧ Pn− 2
2 = 0x03)

4. …

(only the first one is highly likely, as it makes less
assumptions about the plaintext)

Case I: O(Ĉ) = 0

What about the other case?

Well in this case we know for sure that

Pn2 ≠ 0x41

Therefore

O(Ĉ) = 1 ⟹ Pn2 = 0x41 , highly likely

O(Ĉ) = 0 ⟹ Pn2 ≠ 0x41 , for sure

If we have not yet discovered the value of Pn2 with our
initial guess, we can proceed with the next guess for

the same byte.

For example, having tried the byte 0x41, we can now
try the next byte 0x42.

In general this means that with 256 questions we will
discover the value of Pn2.

Pn2 = 0x00 ?

Pn2 = 0x01 ?

⋮

Pn2 = 0xFF ?

If we have discovered the value of Pn2 we can proceed

to discover the value for the next byte, Pn− 1
2 .

Pn− 1
2 = 0x41 ?

PN−12 = 0X41 ?

Construction similar to the one showed before.

From C1 we constructĈ1

C1 :=C1
1 , C2

1 , C3
1 , … , Cn− 1

1 , Cn
1

↓

Ĉ1 :=C1
1 , C2

1 , C3
1 , … , Cn− 1

1 ⊕ 0x41 ⊕ 0x02

⏟
byte changed

, Cn
1 ⊕ Pn2 ⊕ 0x02

⏟
byte changed

From C1 we constructĈ1

C1 :=C1
1 , C2

1 , C3
1 , … , Cn− 1

1 , Cn
1

↓

Ĉ1 :=C1
1 , C2

1 , C3
1 , … , Cn− 1

1 ⊕ 0x41 ⊕ 0x02

⏟
byte changed

, Cn
1 ⊕ Pn2 ⊕ 0x02

⏟
byte changed

Where Pn2 is the value we discovered previously

We then use Ĉ1 to construct a new ciphertext

C = IV , C1 , C2 (old ciphertext)

↓

Ĉ = IV , Ĉ1 , C2 (new ciphertext)

Suppose now the attacker sends this new ciphertext Ĉ
to the oracle, and the oracle replies with

O(Ĉ) = 1

Suppose now the attacker sends this new ciphertext Ĉ
to the oracle, and the oracle replies with

O(Ĉ) = 1

What can we infer?

By definition, it means that the relative plaintext P̂ is
correctly padded according to PKCS#7.

There is only one possible scenario in which P̂ is
correctly padded. And that is when

P̂
n− 1
2 = 0x02

By construction we have

P̂
n− 1
2 = Ĉ

n− 1
1 ⊕ AES-DEC(K, C2)n− 1

= Cn− 1
1 ⊕ 0x41 ⊕ 0x02 ⊕ AES-DEC(K, C2)n− 1

= Cn− 1
1 ⊕ AES-DEC(K, C2)n− 1

⊕ 0x41 ⊕ 0x02

= Pn− 1
2 ⊕ 0x41 ⊕ 0x02

()
()

We thus get

P̂
n− 1
2 = Pn− 1

2 ⊕ 0x41 ⊕ 0x02

P̂
n− 1
2 = 0x02

⟹ Pn− 1
2 = 0x41{

Therefore,

O(Ĉ) = 1 ⟹ Pn− 1
2 = 0x41

O(Ĉ) = 0 ⟹ Pn− 1
2 ≠ 0x41

If we have not yet discovered the value of Pn− 1
2 we can

proceed with the next guess for the same byte.

Pn− 1
2 = 0x42 ?

If we have discovered the value of Pn− 1
2 we can

proceed to discover the next byte

Pn− 2
2 = 0x42 ?

PN−22 = 0X41 ?

Q: Pn− 2
2 = 0x41?

Ĉ1 :=C1
1 , C2

1 , C3
1 , … , Cn− 2

1 ⊕ 0x41 ⊕ 0x03

⏟
byte changed

, Cn− 1
1 ⊕ Pn− 1

2 ⊕ 0x03

⏟
byte changed

, Cn
1 ⊕ Pn2 ⊕ 0x03

⏟
byte changed

Q: Pn− 2
2 = 0x41?

Ĉ1 :=C1
1 , C2

1 , C3
1 , … , Cn− 2

1 ⊕ 0x41 ⊕ 0x03

⏟
byte changed

, Cn− 1
1 ⊕ Pn− 1

2 ⊕ 0x03

⏟
byte changed

, Cn
1 ⊕ Pn2 ⊕ 0x03

⏟
byte changed

Where Pn− 1
2 and Pn2 were discovered previously.

And it continues like that, until we're able to decrypt
the entire block

C2⟶ P2

CONSIDERATIONS

In order to decrypt C1 we would need to have access
to the initialization vector (IV), which sometimes we

do not.

The attack works pretty much the same for all blocks
expect the last block. This is bacause the last block is

the only block that is properly padded. This can
introduce false positives.

For example, say that m = 2 and that

Pmn = 0x10

Then, we cannot use the previous construction

C1 :=C1
1 , C2

1 , C3
1 , … , Cn− 1

1 , Cn
1

↓

Ĉ1 :=C1
1 , C2

1 , C3
1 , … , Cn− 1

1 , Cn
1 ⊕ 0x01 ⊕ 0x01

⏟
byte changed

= C1

and C1 is properly padded, giving us a false positive.

0X04 – THE CODE

We are now ready to see the code that implements the
attack just described.

def challenge_3_solution_main():

 global HOST, PORT, SOCK, ENCRYPTED_MSG, BLOCK_SIZE

 SOCK = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 SOCK.settimeout(300)

 SOCK.connect((HOST, PORT))

 server_data = SOCK.recv(4096)

 start_delimiter = b"\n\nENCRYPTED_FLAG WITH CBC-AES: "

 end_delimiter = b"\n\n> "

 i = server_data.find(start_delimiter) + len(start_delimiter)

 j = server_data.find(end_delimiter)

 ENCRYPTED_MSG = server_data[i:j]

 encrypted_msg_bytes = b64decode(ENCRYPTED_MSG)

 num_blocks = int(len(encrypted_msg_bytes) / BLOCK_SIZE)

 plaintext = []

 # we dunno the IV, so we start from 2nd block.

 for i in range(2, num_blocks + 1):

 plaintext += decrypt_block(encrypted_msg_bytes, i, block_size=BLOCK_SIZE)

 plaintext = "".join(map(lambda x : chr(x), plaintext))

 print(f"Plaintext obtained is: {plaintext}")

 SOCK.close()

decrypt_block (1/3)

def decrypt_block(encrypted_text, n, block_size=8):

 """ Decrypts the n-th block of the encrypted_text """

 assert n > 1, "Cannot decrypt first block as we don't know the IV"

 # are we the last block? this matter because the last block is the

 # only block that is properly padded, and therefore could cause a

 # false positive answer when guessing the last byte with the value

 # of 0x1. Since then the xor would eliminate, the ciphertext

 # woulnd't change and therefore we would simply submit the block

 # as it is.

 last_block = True if int(len(encrypted_text) / block_size) == n else False

 saved_bytes = bytes(encrypted_text[block_size * (n-2): block_size * (n-1)])

 guess_so_far = [0] * block_size

decrypt_block (2/3)

 for i in range(0, block_size):

 msg = list(encrypted_text[:block_size * n])

 found = False

 for c in range(0, 256):

 if last_block and i == 0 and c == 1:

 # skip this to avoid false positives,

 continue

 padding = i + 1

 guess_so_far[block_size - 1 - i] = c

 # prepare new msg depending on how far we've come within this single block

 for j in range(0, i + 1):

 global_index = block_size * (n - 1) - j - 1

 relative_index = block_size - j - 1

 msg[global_index] = saved_bytes[relative_index] ^ guess_so_far[relative_index] ^ padding

decrypt_block (3/3)

 # test new msg

 r = query_oracle(bytes(msg))

 if r:

 found = True

 if chr(c) in string.printable:

 print(f"[{n}]: byte {block_size - i} is: {c}, {chr(c)}")

 else:

 print(f"[{n}]: byte {block_size - i} is: {c}, non-printable byte")

 break

 if not found and last_block and i == 0:

 # since we have not found any other alternatives, we can

 # safely assume that this is the correct value

 guess_so_far[block_size - 1 - i] = 1

 return guess_so_far

Finally, the query_oracle is used to obtain the
oracle from the server

def query_oracle(payload):

 global SOCK

 encoded_payload = b64encode(payload)

 SOCK.send(encoded_payload)

 oracle_reply = SOCK.recv(4096)

 return b"OK" in oracle_reply

Example Execution (1/3)

$ python3 solution.py
[2]: byte 16 is: 84, T
[2]: byte 15 is: 80, P
[2]: byte 14 is: 49, 1
[2]: byte 13 is: 82, R
[2]: byte 12 is: 67, C
[2]: byte 11 is: 78, N
[2]: byte 10 is: 51, 3
[2]: byte 9 is: 45, -
[2]: byte 8 is: 78, N
[2]: byte 7 is: 51, 3
[2]: byte 6 is: 72, H
[2]: byte 5 is: 84, T
[2]: byte 4 is: 45, -
[2]: byte 3 is: 67, C
[2]: byte 2 is: 52, 4
[2]: byte 1 is: 77, M

Example Execution (2/3)

[3]: byte 16 is: 3, non-printable byte
[3]: byte 15 is: 3, non-printable byte
[3]: byte 14 is: 3, non-printable byte
[3]: byte 13 is: 83, S
[3]: byte 12 is: 85, U
[3]: byte 11 is: 48, 0
[3]: byte 10 is: 82, R
[3]: byte 9 is: 51, 3
[3]: byte 8 is: 71, G
[3]: byte 7 is: 78, N
[3]: byte 6 is: 52, 4
[3]: byte 5 is: 68, D
[3]: byte 4 is: 45, -
[3]: byte 3 is: 83, S
[3]: byte 2 is: 49, 1
[3]: byte 1 is: 45, -

Example Execution (3/3)

Plaintext obtained is: M4C-TH3N-3NCR1PT-1S-D4NG3R0US

0X05 – YOUR TURN!

New CTF released on

ctf.leonardotamiano.xyz

It is called

Don't Touch My Cookie

